ÌâÄ¿ÄÚÈÝ

6£®Èçͼ£¬ÒÑÖªµãMÔÚÔ²O£ºx2+y2=4ÉÏÔ˶¯£¬MN¡ÍyÖᣨ´¹×ãΪN£©£¬µãQÔÚNMµÄÑÓ³¤ÏßÉÏ£¬ÇÒ|QN|=2|MN|£®
£¨¢ñ£©Ç󶯵ãQµÄ¹ì¼£·½³Ì£»
£¨¢ò£©Ö±Ïßl£ºy=$\frac{1}{2}$x+mÓ루¢ñ£©Öж¯µãQµÄ¹ì¼£½»ÓÚÁ½¸ö²»Í¬µÄµãAºÍB£¬Ô²OÉÏ´æÔÚÁ½µãC¡¢D£¬Âú×ã|CA|=|CB|£¬|DA|=|DB|£®
£¨¢¡£©ÇómµÄȡֵ·¶Î§£»
£¨¢¢£©Çóµ±$\frac{|CD|}{|AB|}$È¡µÃ×îСֵʱֱÏßlµÄ·½³Ì£®

·ÖÎö £¨¢ñ£©ÉèM£¨x0£¬y0£©£¬Ø­QNØ­=2Ø­MNØ­£¬Ôòx=2x0£¬y=2y0£¬´úÈëÔ²µÄ·½³Ì£¬¼´¿ÉÇóµÃ¶¯µãQµÄ¹ì¼£·½³Ì£»
£¨¢ò£©£¨¢¡£©´úÈëÍÖÔ²·½³Ì£¬ÓÉ¡÷£¾0£¬ÇóµÃmµÄȡֵ·¶Î§£¬ÀûÓÃΤ´ï¶¨Àí¼°Öеã×ø±ê¹«Ê½£¬¼°|CA|=|CB|£¬|DA|=|DB|£¬¼´¿ÉÇóµÃmµÄȡֵ·¶Î§£»
£¨¢¢£©ÓÉÏÒ³¤¹«Ê½£¬ÇóµÃØ­ABØ­¼°Ö±Ïß2x+y+$\frac{3m}{2}$=0ÓëÔ²µÄÏཻÏÒØ­CDØ­£¬ÇóµÃ$\frac{|CD|}{|AB|}$µÄ±í´ïʽ£¬ÇóµÃ$\frac{|CD|}{|AB|}$µÄ×îСֵ£¬¼´¿ÉÇóµÃmµÄÖµ£¬ÇóµÃÖ±ÏßlµÄ·½³Ì£®

½â´ð ½â£º£¨¢ñ£©É趯µãQ£¨x£¬y£©£¬µãM£¨x0£¬y0£©£¬
ÓɵãM£¨x0£¬y0£©ÔÚÔ²x2+y2=4ÉÏ£¬Ôòx02+y02=4£¬
ÓÉØ­QNØ­=2Ø­MNØ­£¬Ôòx=2x0£¬y=2y0£¬
°Ñx0=$\frac{x}{2}$£¬y0=y´úÈëx02+y02=4£¬
µÃ¶¯µãQµÄ¹ì¼£·½³ÌΪ$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$£®£¨4·Ö£©
£¨¢ò£©£¨¢¡£©ÁªÁ¢Ö±ÏßlÓ루¢ñ£©ÖеĹ켣·½³ÌµÃ$\left\{\begin{array}{l}{y=\frac{1}{2}x+m}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1}\end{array}\right.$£¬
¡àx2+2mx+2m2-8=0£¬ÓÉÓÚÓÐÁ½¸ö½»µãA¡¢B£¬¹Ê¡÷£¾0£¬½âµÃØ­mØ­£¼2$\sqrt{2}$£¬¢Ù£¨5·Ö£©
ÉèA£¨x1£¬y1£©£¬B£¨x1£¬y1£©£¬ABµÄÖеãE£¨x£¬y£©£¬ÓɸùÓëϵÊýµÄ¹ØÏµµÃx1+x2=-m£¬$\left\{\begin{array}{l}{x=\frac{{x}_{1}+{x}_{2}}{2}=-m}\\{y=\frac{1}{2}¡Á£¨-m£©+m=\frac{m}{2}}\end{array}\right.$
Ôò$\left\{\begin{array}{l}{x=\frac{{x}_{1}+{x}_{2}}{2}=-m}\\{y=\frac{1}{2}¡Á£¨-m£©+m=\frac{m}{2}}\end{array}\right.$£¬
¹ÊABµÄ´¹Ö±Æ½·ÖÏß·½³ÌΪy-$\frac{m}{2}$=-2£¨x+m£©£¬¼´2x+y+$\frac{3m}{2}$=0£®£¨6·Ö£©
ÓÉÔ²OÉÏ´æÔÚÁ½µãC¡¢D£¬Âú×ãØ­CAØ­=Ø­CBØ­£¬Ø­DAØ­=Ø­DBØ­£¬
¿ÉÖªABµÄ´¹Ö±Æ½·ÖÏßÓëÔ²O½»ÓÚC¡¢DÁ½µã£¬ÓÉÖ±ÏßÓëÔ²µÄλÖùØÏµ¿ÉµÃ$\frac{Ø­\frac{3m}{2}Ø­}{\sqrt{5}}$£¼2£¬
½âµÃ£ºØ­mØ­£¼$\frac{4\sqrt{5}}{3}$£¬¢Ú
ÓÉ¢Ù¡¢¢Ú½âµÃØ­mØ­£¼2$\sqrt{2}$£¬
¡àmµÄȡֵ·¶Î§ÊÇ-2$\sqrt{2}$£¼m£¼2$\sqrt{2}$£®£¨8·Ö£©
£¨¢¢£©ÓÉ£¨¢¡£©Öª$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=-2m}\\{{x}_{1}{x}_{2}=2{m}^{2}-8}\end{array}\right.$£¬
ÔòØ­ABØ­=$\sqrt{1+{k}^{2}}$•Ø­x1-x2Ø­=$\sqrt{1+{k}^{2}}$•$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$£¬
=$\sqrt{1+£¨\frac{1}{2}£©^{2}}$•$\sqrt{4{m}^{2}-4£¨2{m}^{2}-8£©}$=$\frac{\sqrt{5}}{2}$¡Á$\sqrt{32-4{m}^{2}}$£¬£¨9·Ö£©
ÓÖÖ±Ïß2x+y+$\frac{3m}{2}$=0ÓëÔ²µÄÏཻÏÒØ­CDØ­=2$\sqrt{{2}^{2}-£¨\frac{Ø­\frac{3m}{2}Ø­}{\sqrt{5}}£©^{2}}$=2$\sqrt{\frac{80-9{m}^{2}}{20}}$£¬£¨10·Ö£©
¡à$\frac{Ø­CDØ­}{Ø­ABØ­}$=$\frac{2\sqrt{\frac{80-9{m}^{2}}{20}}}{\frac{\sqrt{5}}{2}¡Á\sqrt{32-4{m}^{2}}}$=$\frac{2}{5}$•$\sqrt{\frac{80-9{m}^{2}}{32-4{m}^{2}}}$=$\frac{2}{5}$•$\sqrt{\frac{9}{4}+\frac{2}{8-{m}^{2}}}$£¬
ÓÉ£¨¢¡£©-2$\sqrt{2}$£¼m£¼2$\sqrt{2}$£¬¹Êµ±m=0ʱ£¬$\frac{Ø­CDØ­}{Ø­ABØ­}$=$\frac{2}{5}$•$\sqrt{\frac{9}{4}+\frac{2}{8-{m}^{2}}}$£¬È¡µÃ×îСֵ£¬£¨11·Ö£©
¹ÊÖ±Ïßl·½³ÌΪy=$\frac{1}{2}$x£®£¨12·Ö£©

µãÆÀ ±¾Ì⿼²é¹ì¼£·½³ÌµÄÇ󷨣¬¿¼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí¼°ÏÒ³¤¹«Ê½£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø