题目内容
已知x,y满足约束条件
,那么z=2x+3y的最小值为( )
|
A、
| ||
| B、8 | ||
C、
| ||
| D、10 |
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最小值.
解答:
解:作出不等式对应的平面区域(阴影部分),
由z=2x+3y,得y=-
x+
,
平移直线y=-
x+
,由图象可知当直线y=-
x+
经过点A时,直线y=-
x+
的截距最小,此时z最小.
由
,解得
,
即A(
,1).
此时z的最小值为z=2×
+3×1=5+3=8,
故选:B.
由z=2x+3y,得y=-
| 2 |
| 3 |
| z |
| 3 |
平移直线y=-
| 2 |
| 3 |
| z |
| 3 |
| 2 |
| 3 |
| z |
| 3 |
| 2 |
| 3 |
| z |
| 3 |
由
|
|
即A(
| 5 |
| 2 |
此时z的最小值为z=2×
| 5 |
| 2 |
故选:B.
点评:本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.
练习册系列答案
相关题目
设全集U=R,已知集合A={x|x≥1},B={x|(x+2)(x-1)<0},则( )
| A、A∪B=U |
| B、A∩B=∅ |
| C、∁UB⊆A |
| D、∁UA⊆B |
sin315°-cos495°+2sin210°的值是( )
| A、1 | ||
| B、-1 | ||
C、
| ||
D、-
|
下列说法错误的是( )
| A、“ab<0”是“方程ax2+by2=1表示双曲线”的充分不必要条件 |
| B、命题“若a=0,则ab=0”的否命题是:“若a≠0,则ab≠0” |
| C、若命题p:存在x∈R,x2-x+1=0,则命题p的否定:对任意x∈R,x2-x+1≠0 |
| D、若命题“非p”与命题“p或q”都是真命题,那么命题q一定是真命题 |
已知i是虚数单位,z=1+
,则|z|=( )
| 1 |
| i |
| A、0 | ||
| B、1 | ||
C、
| ||
| D、2 |