题目内容
空间四边形ABCD中,点M,N分别是AB,CD的中点,且
=
,
=
,
=
,则用向量
,
,
表示向量
为 .
| AB |
| b |
| AC |
| c |
| AD |
| d |
| b |
| c |
| d |
| MN |
考点:向量数乘的运算及其几何意义
专题:平面向量及应用
分析:据题意,画出图形,结合图形,求出向量
的大小.
| MN |
解答:
解:据题意,画出图形,如图所示;
∵点M,N分别是AB,CD的中点,
∴
=
=
,
=
(
+
)=
(
+
);
∴
=
-
=
(
+
)-
=
+
-
.
故答案为:
+
-
.
∵点M,N分别是AB,CD的中点,
∴
| AM |
| 1 |
| 2 |
| AB |
| 1 |
| 2 |
| b |
| AN |
| 1 |
| 2 |
| AD |
| AC |
| 1 |
| 2 |
| d |
| c |
∴
| MN |
| AN |
| AM |
| 1 |
| 2 |
| d |
| c |
| 1 |
| 2 |
| b |
| 1 |
| 2 |
| c |
| 1 |
| 2 |
| d |
| 1 |
| 2 |
| b |
故答案为:
| 1 |
| 2 |
| c |
| 1 |
| 2 |
| d |
| 1 |
| 2 |
| b |
点评:本题考查了平面向量的加法与减法的几何意义的应用问题,是基础题目.
练习册系列答案
相关题目