题目内容
8.设矩阵M=$[\begin{array}{l}{1}&{2}\\{x}&{y}\end{array}]$,N=$[\begin{array}{l}{2}&{4}\\{-1}&{-1}\end{array}]$,若MN=$[\begin{array}{l}{0}&{2}\\{5}&{13}\end{array}]$,求矩阵M的特征值.分析 先求矩阵M,再根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值.
解答 解:∵M=$[\begin{array}{l}{1}&{2}\\{x}&{y}\end{array}]$,N=$[\begin{array}{l}{2}&{4}\\{-1}&{-1}\end{array}]$,若MN=$[\begin{array}{l}{0}&{2}\\{5}&{13}\end{array}]$,
∴$\left\{\begin{array}{l}{2x-y=5}\\{4x-y=13}\end{array}\right.$,∴x=4,y=3;…(5分)
∴矩阵M的特征方程为λ2-4λ-5=0,∴λ=-1或5,
矩∴阵M的特征值为-1或5.…(10分)
点评 本题主要考查矩阵的乘法,考查矩阵特征值等基础知识,属于基础题.
练习册系列答案
相关题目
4.在两坐标轴上截距均为m(m∈R)的直线l1与直线l2:2x+2y-3=0的距离为$\sqrt{2}$,则m=( )
| A. | $\frac{7}{2}$ | B. | 7 | C. | -$\frac{1}{2}$或$\frac{7}{2}$ | D. | -1或7 |
3.过点P(0,1),且与点A(3,3)和B(5,-1)的距离相等的直线方程是( )
| A. | y=1 | B. | 2x+y-1=0 | ||
| C. | y=1或2x+y-1=0 | D. | 2x+y-1=0或2x+y+1=0 |
13.若等差数列{an}的前7项和为48,前14项和为72,则它的前21项和为( )
| A. | 96 | B. | 72 | C. | 60 | D. | 48 |
20.在长方体ABCD-A1B1C1D1中,B1C和C1D与底面所成的角分别为60°和45°,则异面直线B1C和C1D所成角的正弦值为( )
| A. | $\frac{\sqrt{2}}{4}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{{\sqrt{10}}}{4}$ | D. | $\frac{{\sqrt{6}}}{4}$ |
17.已知定义在实数集R上的函数f(x)满足下列三个条件
①对任意的x∈R,都有f(x+4)=f(x).
②对于任意的x1,x2∈[0,2],x1<x2,都有f(x1)<f(x2).
③函数f(x+2)的图象关于y轴对称.则下列结论中,正确的是( )
①对任意的x∈R,都有f(x+4)=f(x).
②对于任意的x1,x2∈[0,2],x1<x2,都有f(x1)<f(x2).
③函数f(x+2)的图象关于y轴对称.则下列结论中,正确的是( )
| A. | f(4.5)<f(6.5)<f(7) | B. | f(4.5)<f(7)<f(6.5) | C. | f(7)<f(6.5)<f(4.5) | D. | f(7)<f(4.5)<f(6.5) |