题目内容
1.在△ABC中,已知a=2,A=45°,B=120°,则b=( )| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{6}$ | D. | $2\sqrt{2}$ |
分析 由已知利用正弦定理即可求值.
解答 解:∵a=2,A=45°,B=120°,
∴由正弦定理可得:b=$\frac{asinB}{sinA}$=$\frac{2×\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}}$=$\sqrt{6}$.
故选:C.
点评 本题主要考查了正弦定理在解三角形中的应用,属于基础题.
练习册系列答案
相关题目
16.
某市政府为了确定一个较为合理的居民用电标准,必须先了解全市居民日常用电量的分布情况.现采用抽样调查的方式,获得了n位居民在2012年的月均用电量(单位:度)数据,样本统计结果如下图表:
(1)求月均用电量的中位数与平均数估计值;
(2)如果用分层抽样的方法从这n位居民中抽取8位居民,再从这8位居民中选2位居民,那么至少有1位居民月均用电量在30至40度的概率是多少?
(3)用样本估计总体,把频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用电量在30至40度的居民数X的分布列.
| 分 组 | 频 数 | 频 率 |
| [0,10) | 0.05 | |
| [10,20) | 0.10 | |
| [20,30) | 30 | |
| [30,40) | 0.25 | |
| [40,50) | 0.15 | |
| [50,60] | 15 | |
| 合 计 | n | 1 |
(2)如果用分层抽样的方法从这n位居民中抽取8位居民,再从这8位居民中选2位居民,那么至少有1位居民月均用电量在30至40度的概率是多少?
(3)用样本估计总体,把频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用电量在30至40度的居民数X的分布列.
10.已知定义在R上的奇函数f(x)满足f(x+2)=f(x),且在(0,1]上,满足f(x)=$\frac{x^2-x}{2}$,则f(-2016)+f(-2016$\frac{1}{2}$)=( )
| A. | 0 | B. | $\frac{1}{4}$ | C. | -$\frac{1}{8}$ | D. | $\frac{1}{8}$ |