题目内容
16.三棱锥A-BCD内接于半径为2的球O,BC过球心O,当三棱锥A-BCD体积取得最大值时,三棱锥A-BCD的表面积为( )| A. | $6+4\sqrt{3}$ | B. | $8+2\sqrt{3}$ | C. | $4+6\sqrt{3}$ | D. | $8+4\sqrt{3}$ |
分析 由题意,BC为直径,△BCD的最大面积为$\frac{1}{2}×4×2$=4,三棱锥A-BCD体积最大时,AO⊥平面BCD,三棱锥的高为2,即可求出三棱锥A-BCD的表面积.
解答 解:由题意,BC为直径,△BCD的最大面积为$\frac{1}{2}×4×2$=4,
三棱锥A-BCD体积最大时,AO⊥平面BCD,三棱锥的高为2,
∴三棱锥A-BCD的表面积为4×2+2×$\frac{1}{2}×2\sqrt{2}×\sqrt{6}$=8+4$\sqrt{3}$,
故选D.
点评 本题考查三棱锥A-BCD的表面积,考查三棱锥体积的计算,考查学生的计算能力,确定AO⊥平面BCD,三棱锥的高为2是关键.
练习册系列答案
相关题目
4.为响应“精确扶贫”号召,某企业计划每年用不超过100万元的资金购买单价分别为1500元/箱和3000元/箱的A、B两种药品捐献给贫困地区某医院,其中A药品至少100箱,B药品箱数不少于A药品箱数.则该企业捐献给医院的两种药品总箱数最多可为( )
| A. | 200 | B. | 350 | C. | 400 | D. | 500 |
1.
如图,有一个水平放置的透明无盖的正三棱柱容器,其中侧棱长为8cm,底面边长为12cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时,测得水深为6cm,如果不计容器的厚度,则球的表面积为( )
| A. | 36πcm2 | B. | 64πcm2 | C. | 80πcm2 | D. | 100πcm2 |
5.民大附中的甲、乙两人同时参加某大学的自主招生,在申请材料中提交了某学科10次的考试成绩(满分100分),按照时间顺序记录如下:

(1)根据两组数据画出两人成绩的茎叶图,并通过茎叶图比较两人成绩的平均值及分散程度(不要求计算具体值,直接写出结论即可);
(2)现将两人成绩分为三个等级:
注:A级高于B级,B级高于C级
假设两人的成绩相互独立,根据所给的数据,以事件发生的频率为相应事件发生的概率,求甲的等级高于乙的等级的概率;
(3)假如你是该大学的招生老师,结合上述数据,决定应录取哪位同学,说明理由.
(1)根据两组数据画出两人成绩的茎叶图,并通过茎叶图比较两人成绩的平均值及分散程度(不要求计算具体值,直接写出结论即可);
(2)现将两人成绩分为三个等级:
| 成绩分数 | [0,70] | [70,90] | [90,100] |
| 等级 | C级 | B级 | A级 |
假设两人的成绩相互独立,根据所给的数据,以事件发生的频率为相应事件发生的概率,求甲的等级高于乙的等级的概率;
(3)假如你是该大学的招生老师,结合上述数据,决定应录取哪位同学,说明理由.
20.命题p:?x∈R,x2+ax+a2≥0;命题q:?x∈R,sinx+cosx=2,则下列命题中为真命题的是( )
| A. | (¬p)∧(¬q) | B. | p∧q | C. | (¬p)∨q | D. | p∧(¬q) |