题目内容
已知全集U=R,集合A={x|-1≤x<3},B={0,2,4,6},则A∩B等于( )
| A、{0,2} |
| B、{-1,0,2} |
| C、{x|0≤x≤2} |
| D、{x|-1≤x≤2} |
考点:交集及其运算
专题:集合
分析:根据A与B,找出A与B的交集即可.
解答:
解:∵A={x|-1≤x<3},B={0,2,4,6},
∴A∩B={0,2}.
故选:A.
∴A∩B={0,2}.
故选:A.
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
若函数f(x)=x2+ax,x∈R,常数a∈R,则( )
| A、存在a,使f(x)是奇函数 |
| B、存在a,使f(x)是偶函数 |
| C、?a∈R,f(x)在(0,+∞)上是增函数 |
| D、?a∈R,f(x)在(-∞,0)上是减函数 |
执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为( )

| A、7 | B、9 | C、11 | D、13 |
设函数f(x)=sin(2x+
),则下列结论正确的是( )
| π |
| 3 |
A、f(x)的图象关于直线x=
| ||
B、f(x)的图象关于点(
| ||
C、f(x)的最小正周期为
| ||
D、f(x)在[0,
|
动点P在函数y=sin2x的图象上移动,动点Q(x,y)满足
=(
,0),则动点Q的轨迹方程为( )
| PQ |
| π |
| 8 |
A、y=sin(2x+
| ||
B、y=sin(2x-
| ||
C、y=sin(2x+
| ||
D、y=sin(2x-
|