题目内容
3.在直角坐标系xOy中,有一定点M(-1,2),若线段OM的垂直平分线过抛物线x2=2py(p>0)的焦点,则该抛物线的准线方程是$y=-\frac{5}{4}$.分析 先求出线段OM的垂直平分线方程,然后表示出抛物线的焦点坐标并代入到所求方程中,进而可求得p的值,即可得到准线方程.
解答 解:依题意我们容易求得直线的方程为2x-4y+5=0,
把焦点坐标($\frac{p}{2}$,0)代入可求得焦参数p=$\frac{5}{4}$,
从而得到准线方程$y=-\frac{5}{4}$,
故答案为:$y=-\frac{5}{4}$.
点评 本题主要考查抛物线的基本性质.基本性质的熟练掌握是解答正确的关键.
练习册系列答案
相关题目
13.
如图,在四边形ABCD中,AD=DC=CB=1,$AB=\sqrt{3}$,对角线$AC=\sqrt{2}$.将△ACD沿AC所在直线翻折,当AD⊥BC时,线段BD的长度为$\sqrt{2}$.
18.在等差数列{an}中,若a3+a4+a5+a6+a7=45,那么a5等于( )
| A. | 4 | B. | 5 | C. | 9 | D. | 18 |
8.$\frac{5i}{2-i}$=( )
| A. | 1+2i | B. | -1+2i | C. | -1-2i | D. | 1-2i |
15.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:
已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为$\frac{3}{5}$.
(1)请将上述列联表补充完整;
(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;
(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率.
下面的临界值表仅供参考:
(参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)
| 喜欢游泳 | 不喜欢游泳 | 合计 | |
| 男生 | 10 | ||
| 女生 | 20 | ||
| 合计 |
(1)请将上述列联表补充完整;
(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;
(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率.
下面的临界值表仅供参考:
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |