题目内容
5.已知A,B,C是半径为l的圆O上的三点,AB为圆O的直径,P为圆O内一点(含圆周),则$\overrightarrow{PA}$$•\overrightarrow{PB}$$+\overrightarrow{PB}$$•\overrightarrow{PC}$$+\overrightarrow{PC}$$•\overrightarrow{PA}$的取值范围为[-$\frac{4}{3}$,4].分析 根据题意,把$\overrightarrow{PA}$$•\overrightarrow{PB}$$+\overrightarrow{PB}$$•\overrightarrow{PC}$$+\overrightarrow{PC}$$•\overrightarrow{PA}$化为3${\overrightarrow{OP}}^{2}$+2$\overrightarrow{PO}$•$\overrightarrow{OC}$-1,利用参数表示点C(cosα,sinα),P(rcosβ,rsinβ)且0≤r≤1;根据三角函数的有界性求出3${\overrightarrow{OP}}^{2}$+2$\overrightarrow{PO}$•$\overrightarrow{OC}$-1的最值即可.
解答 解:根据题意,$\overrightarrow{OA}$=-$\overrightarrow{OB}$,且|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=1,
∴$\overrightarrow{PA}$$•\overrightarrow{PB}$$+\overrightarrow{PB}$$•\overrightarrow{PC}$$+\overrightarrow{PC}$$•\overrightarrow{PA}$=($\overrightarrow{PO}$+$\overrightarrow{OA}$)•($\overrightarrow{PO}$+$\overrightarrow{OB}$)
+($\overrightarrow{PO}$+$\overrightarrow{OB}$)•($\overrightarrow{PO}$+$\overrightarrow{OC}$)+($\overrightarrow{PO}$+$\overrightarrow{OC}$)•($\overrightarrow{PO}$+$\overrightarrow{OA}$)
=3${\overrightarrow{PO}}^{2}$+2$\overrightarrow{PO}$•($\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$)+$\overrightarrow{OA}$•$\overrightarrow{OB}$+($\overrightarrow{OB}$+$\overrightarrow{OA}$)•$\overrightarrow{OC}$
=3${\overrightarrow{OP}}^{2}$+2$\overrightarrow{PO}$•$\overrightarrow{OC}$-1,
以点O为坐标原点,建立直角坐标系,
设点C(cosα,sinα),点P(rcosβ,rsinβ),且0≤r≤1;
则3${\overrightarrow{OP}}^{2}$+2$\overrightarrow{PO}$•$\overrightarrow{OC}$-1=3r2-2rcos(α-β)-1,
∴3${\overrightarrow{OP}}^{2}$+2$\overrightarrow{PO}$•$\overrightarrow{OC}$-1≤3r2+2r-1≤4,
且3${\overrightarrow{OP}}^{2}$+2$\overrightarrow{PO}$•$\overrightarrow{OC}$-1≥3r2-2r-1≥-$\frac{4}{3}$;
∴$\overrightarrow{PA}$$•\overrightarrow{PB}$$+\overrightarrow{PB}$$•\overrightarrow{PC}$$+\overrightarrow{PC}$$•\overrightarrow{PA}$的取值范围是[-$\frac{4}{3}$,4].
故答案为:[-$\frac{4}{3}$,4].
点评 本题考查了平面向量的数量积和利用坐标表示向量以及三角函数的性质与应用问题,是难题.
| A. | 3,3 | B. | -3,3 | C. | 3,3i | D. | -3,3i |