题目内容
12.正方体12条棱所在直线中成异面直线的有24对.分析 在正方体ABCD-A1B1C1D1中,与棱AB异面的有CC1,DD1,B1C1,A1D1共4对,正方体ABCD-A1B1C1D1有12条棱,由此能求出异面直线共有多少对.
解答 解:如图,在正方体ABCD-A1B1C1D1中,![]()
与棱AB异面的有CC1,DD1,B1C1,A1D1共4对,
正方体ABCD-A1B1C1D1有12条棱,
排除两棱的重复计算,
∴异面直线共有12×4×$\frac{1}{2}$=24对.
故答案为:24.
点评 本题考查异面直线的判断,是基础题,解题时要认真审题,注意正方体的结构特征的合理运用.
练习册系列答案
相关题目
2.设m,n是两条不同的直线,α,β是两个不同的平面( )
| A. | 若m∥n,m⊥α,则n⊥α | B. | 若m∥α,m∥β,则α∥β | C. | 若m∥α,n∥α,则m∥n | D. | 若m∥α,α⊥β,则m⊥β |
7.一个车间为了规定工时定额,需要确定加工零件所花费的时间,由此进行了5次实验,收集数据如下:
由以上数据的线性回归方程估计加工100个零件所花费的时间为( )
附:回归直线的斜率和截距的最小二乘估计公式分别为$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.
| 零件数:x个 | 10 | 20 | 30 | 40 | 50 |
| 加工时间:y分钟 | 59 | 71 | 75 | 81 | 89 |
附:回归直线的斜率和截距的最小二乘估计公式分别为$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.
| A. | 124分钟 | B. | 150分钟 | C. | 162分钟 | D. | 178分钟 |
1.已知曲线f(x)=$\frac{{x}^{2}+a}{x+1}$在点(1,f(1))处切线的斜率为1,则实数a的值为( )
| A. | -$\frac{3}{4}$ | B. | -1 | C. | $\frac{3}{2}$ | D. | 2 |
8.已知p:函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x+b在R上是增函数,q:函数f(x)=xa-2在(0,+∞)上是增函数,则p是¬q的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |