题目内容

设tan1234°=a,那么sin(-206°)+cos(-206°)的值为(  )
A、
1+a
1+a2
B、-
1+a
1+a2
C、
a-1
1+a2
D、
1-a
1+a2
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:已知等式左边中的角度变形后,利用诱导公式化简表示出tan26°,利用同角三角函数间的基本关系求出cos26°与sin26°的值,原式变形后利用诱导公式化简,将各自的值代入计算即可求出值.
解答: 解:tan1234°=tan(7×180°-26°)=-tan26°=a,即tan26°=-a,
∴cos26°=
1
1+tan226°
=
1
1+a2
=
1
1+a2
,sin26°=
1-cos226°
=
|a|
1+a2
=-
a
1+a2

则原式=-sin(180°+26°)+cos(180°+26°)=sin26°-cos26°=-
a
1-a2
-
1
1+a2
=-
1+a
1+a2

故选:B.
点评:此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网