题目内容

设函数f(x)=loga(x+b)(a>0且a≠1)的图象过点(2,1),其反函数的图象过点(2,8),则a+b等于.(  )
A、1B、2C、3D、4
考点:反函数,对数函数的单调性与特殊点
专题:函数的性质及应用
分析:本题考查了互为反函数的函数图象之间的关系、指数式和对数式的互化等函数知识;
根据反函数的图象过点(2,8),则原函数的图象过(8,2)点,再由函数f(x)=loga(x+b)(a>0,a≠1)的图象过点(2,1),构建方程即可求得a,b的值.
解答: 解:函数f(x)=loga(x+b)(a>0,a≠1)的图象过点(2,1),其反函数的图象过点(2,8),
loga(2+b)=1
loga(8+b)=2

2+b=a
8+b=a2

解得:a=3或a=-2(舍),b=1,
∴a+b=4,
故选:D.
点评:本题的解答时,要巧妙的利用互为反函数的函数图象间的关系,将反函数图象上的点转化为原函数图象上的点,过程简捷.这要比求出原函数的反函数,再将点的坐标代入方便得多,值得借鉴.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网