题目内容
已知数列{an}中,a1=1,a2=3,其前n项和为Sn,且当n≥2时,
=
-
.
(1)求证:数列数列{Sn}是等比数列,并求数列{an}的通项公式;
(2)另bn=
,记数列的前n项的和为Tn,试证明:Tn<
.
| 1 |
| Sn |
| 1 |
| an |
| 1 |
| an+1 |
(1)求证:数列数列{Sn}是等比数列,并求数列{an}的通项公式;
(2)另bn=
| an | ||||
(
|
| 7 |
| 8 |
考点:数列的求和,数列与不等式的综合
专题:等差数列与等比数列
分析:(1)由an=Sn-Sn-1,得
=
-
=
-
,从而得到Sn2=Sn-1Sn=1,n≥2,由此能证明数列数列{Sn}是首项为1,公比为4的等比数列.进而得到Sn=4n-1,由此能求出an=
.
(2)由bn=
,知当n=1时,Tn=
=
<
.当n≥2时,bn=
-
,由此利用裂项求和法能证明Tn<
.
| 1 |
| Sn |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| Sn-Sn-1 |
| 1 |
| Sn+1-Sn |
|
(2)由bn=
| an | ||||
(
|
| 1 | ||||
(
|
| 3 |
| 8 |
| 7 |
| 8 |
| 1 |
| 4n-2+1 |
| 1 |
| 4n-1+1 |
| 7 |
| 8 |
解答:
(1)证明:∵数列{an}中,a1=1,a2=3,其前n项和为Sn,
且当n≥2时,
=
-
,
∴由an=Sn-Sn-1,得
=
-
=
-
,
化简,得Sn2=Sn-1Sn=1,n≥2,
又a1=1,a2=3,∴S1=1,S2=4,
∴数列数列{Sn}是首项为1,公比为4的等比数列.
∴Sn=4n-1,
∴an=Sn-Sn-1=4n-1-4n-2=3•4n-2,n≥2.
n=1时,3•4n-2=
≠a1,
∴an=
.
(2)bn=
,
当n=1时,Tn=
=
<
.
当n≥2时,bn=
-
,
∴Tn=
+
-
+
-
+…+
-
=
+
-
=
-
<
.
∴Tn<
.
且当n≥2时,
| 1 |
| Sn |
| 1 |
| an |
| 1 |
| an+1 |
∴由an=Sn-Sn-1,得
| 1 |
| Sn |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| Sn-Sn-1 |
| 1 |
| Sn+1-Sn |
化简,得Sn2=Sn-1Sn=1,n≥2,
又a1=1,a2=3,∴S1=1,S2=4,
∴数列数列{Sn}是首项为1,公比为4的等比数列.
∴Sn=4n-1,
∴an=Sn-Sn-1=4n-1-4n-2=3•4n-2,n≥2.
n=1时,3•4n-2=
| 3 |
| 4 |
∴an=
|
(2)bn=
| an | ||||
(
|
当n=1时,Tn=
| 1 | ||||
(
|
| 3 |
| 8 |
| 7 |
| 8 |
当n≥2时,bn=
| 1 |
| 4n-2+1 |
| 1 |
| 4n-1+1 |
∴Tn=
| 3 |
| 8 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 8 |
| 1 |
| 4n-2+1 |
| 1 |
| 4n-1+1 |
=
| 3 |
| 8 |
| 1 |
| 2 |
| 1 |
| 4n-1+1 |
=
| 7 |
| 8 |
| 1 |
| 4n-1+1 |
| 7 |
| 8 |
∴Tn<
| 7 |
| 8 |
点评:本题考查等比数列的证明,考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目