题目内容

P是双曲线x2-2y2=2上的一点,F1,F2分别是其左右焦点,若F1P⊥F2P,则△F1PF2的面积是
 
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据所给的双曲线的方程,写出双曲线的实轴长和焦点之间的距离,设出要用的点到两个焦点之间的距离,根据双曲线的定义和勾股定理写出m,n之间的关系,求出面积.
解答: 解:∵双曲线x2-2y2=2,
∴a=
2
,b=1,c=
3

设PF1=m,PF2=n,
∵F1P⊥F2P,
∴m2+n2=12①
∵|m-n|=2
2
②,
把②平方,然后把①代入,得到mn=2,
∴△F1PF2的面积为
1
2
mn=1,
故答案为:1.
点评:本题考查双曲线的定义,解题的关键是根据勾股定理和双曲线的定义,得到表示面积的代数式的值,求出面积.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网