题目内容
已知数列{an}满足:a1=3,an+1=an+3n2+3n+2-
,n∈N*.
(1)求数列{an}的通项公式;
(2)证明:
+
+…+
<
.
| 1 |
| n(n+1) |
(1)求数列{an}的通项公式;
(2)证明:
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 2 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由an+1-an=3n2+3n+2-(
-
),利用累加法能求出数列{an}的通项公式.
(2)由
=
(
-
),能证明
+
+…+
<
.
| 1 |
| n |
| 1 |
| n+1 |
(2)由
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| n2-n+1 |
| 1 |
| n2+n+1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 2 |
解答:
(本小题满分13分)
解:(1)因为数列{an}满足:a1=3,an+1=an+3n2+3n+2-
,n∈N*.
所以an+1-an=3n2+3n+2-(
-
),…(2分)
所以an=a1+
(ak+1-ak)=3+
(3k2+3k+2)-
(
-
)…(5分)
=3+3×
(n-1)n(2n-1)+3×
+2(n-1)-(1-
)=n3+n+
…(8分)
(2)因为
=
=
=
=
(
-
),
…(10分)
所以
=
(
-
)=
[1-
]<
,
所以
+
+…+
<
.…(13分)
解:(1)因为数列{an}满足:a1=3,an+1=an+3n2+3n+2-
| 1 |
| n(n+1) |
所以an+1-an=3n2+3n+2-(
| 1 |
| n |
| 1 |
| n+1 |
所以an=a1+
| n-1 |
| k=1 |
| n-1 |
| k=1 |
| n-1 |
| k=1 |
| 1 |
| k |
| 1 |
| k+1 |
=3+3×
| 1 |
| 6 |
| n(n-1) |
| 2 |
| 1 |
| n |
| 1 |
| n |
(2)因为
| 1 |
| an |
| n |
| n4+n2+1 |
| n |
| (n2+1)2-n2 |
| n |
| (n2+n+1)(n2-n+1) |
| 1 |
| 2 |
| 1 |
| n2-n+1 |
| 1 |
| n2+n+1 |
…(10分)
所以
| n |
| k=1 |
| 1 |
| ak |
| 1 |
| 2 |
| n |
| k=1 |
| 1 |
| k2-k+1 |
| 1 |
| k2+k+1 |
| 1 |
| 2 |
| 1 |
| n(n+1)+1 |
| 1 |
| 2 |
所以
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 2 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意累加法的合理运用.
练习册系列答案
相关题目