ÌâÄ¿ÄÚÈÝ
СÃ÷ÏÂѧÆÚ¾ÍÒªÉÏ´óѧÁË£¬ËûÁ˽⵽´óѧÉú¶¼ÒªÍ¨¹ýCET4£¨¹ú¼ÒÓ¢ÓïËļ¶£©¿¼ÊÔ£¬ÐèÒª´Ê»ãÁ¿ÔÚ¸ßÖеĻù´¡ÉÏ£¬ÔÙÔö¼Ó´óÔ¼1100¸ö£®Ëû×¼±¸´ÓÐÂѧÆÚ¿ªÊ¼£¬ÀûÓÃһѧÆÚ£¨ÒÔ20Öܼƣ©Íê³É´Ê»ãÁ¿µÄÒªÇó£¬ÔçÈÕͨ¹ýCET4¿¼ÊÔ£®Éè¼ÆÁË2Ì×·½°¸£º
·½°¸Ò»£ºµÚÒ»Öܱ³50¸öµ¥´Ê£¬ÒÔºóÿÖܶ¼±ÈÉÏÒ»Öܶ౳2¸ö£¬Ö±µ½È«²¿µ¥´Ê±³Íꣻ
·½°¸¶þ£ºÃ¿Öܱ³Í¬ÑùÊýÁ¿µÄµ¥´Ê£¬ÔÚͬһÖÜÄÚ£¬ÐÇÆÚÒ»±³2¸öµ¥´Ê£¬ÐÇÆÚ¶þ±³µÄÊÇÐÇÆÚÒ»µÄ2±¶£¬Í¬ÑùµÄ¹æÂÉÒ»Ö±±³µ½ÐÇÆÚÎ壬ÖÜÄ©Á½ÌìÐÝÏ¢£®ÊÔÎÊ£º
£¨¢ñ£©°´ÕÕ·½°¸Ò»£¬µÚ10ÖÜÒª±³¶àÉÙ¸öµ¥´Ê£¿
£¨¢ò£©Èç¹ûÏë½Ï¿ì±³Íêµ¥´Ê£¬Çë˵Ã÷Ñ¡ÔñÄÄÒ»ÖÖ·½°¸±È½ÏºÏÊÊ£¿
·½°¸Ò»£ºµÚÒ»Öܱ³50¸öµ¥´Ê£¬ÒÔºóÿÖܶ¼±ÈÉÏÒ»Öܶ౳2¸ö£¬Ö±µ½È«²¿µ¥´Ê±³Íꣻ
·½°¸¶þ£ºÃ¿Öܱ³Í¬ÑùÊýÁ¿µÄµ¥´Ê£¬ÔÚͬһÖÜÄÚ£¬ÐÇÆÚÒ»±³2¸öµ¥´Ê£¬ÐÇÆÚ¶þ±³µÄÊÇÐÇÆÚÒ»µÄ2±¶£¬Í¬ÑùµÄ¹æÂÉÒ»Ö±±³µ½ÐÇÆÚÎ壬ÖÜÄ©Á½ÌìÐÝÏ¢£®ÊÔÎÊ£º
£¨¢ñ£©°´ÕÕ·½°¸Ò»£¬µÚ10ÖÜÒª±³¶àÉÙ¸öµ¥´Ê£¿
£¨¢ò£©Èç¹ûÏë½Ï¿ì±³Íêµ¥´Ê£¬Çë˵Ã÷Ñ¡ÔñÄÄÒ»ÖÖ·½°¸±È½ÏºÏÊÊ£¿
¿¼µã£ºÊýÁеÄÓ¦ÓÃ
רÌ⣺ӦÓÃÌâ,µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨¢ñ£©¸ù¾ÝÌâÒ⣬·½°¸Ò»Ã¿ÖÜËù±³µÄµ¥´Ê³ÉµÈ²îÊýÁÐ{an}£¬´Ó¶øÇóµÚ10Ïî¼´¿É£»
£¨¢ò£©·½°¸Ò»³ÉµÈ²îÊýÁУ¬¼ÆËãµÃS16=1040£¬S17=1122£»·½°¸¶þ³ÉµÈ±ÈÊýÁдӶøÇóµÃT17=1054£¬T18=1116£»´Ó¶øÇó½â£®
£¨¢ò£©·½°¸Ò»³ÉµÈ²îÊýÁУ¬¼ÆËãµÃS16=1040£¬S17=1122£»·½°¸¶þ³ÉµÈ±ÈÊýÁдӶøÇóµÃT17=1054£¬T18=1116£»´Ó¶øÇó½â£®
½â´ð£º
½â£º£¨¢ñ£©¸ù¾ÝÌâÒ⣬
·½°¸Ò»Ã¿ÖÜËù±³µÄµ¥´Ê³ÉµÈ²îÊýÁÐ{an}£¬
ÆäÖÐa1=50£¬d=2£¬
Ôòa10=a1+£¨10-1£©d=50+£¨10-1£©¡Á2=68£¬
´Ó¶ø£¬°´ÕÕ·½°¸Ò»£¬µÚ10ÖÜÒª±³68¸öµ¥´Ê£®
£¨¢ò£©ÒòΪÔڵȲîÊýÁÐ{an}ÖУ¬d=2£¾0£¬´Ó¶øÊýÁÐ{an}Êǵ¥µ÷µÝÔöÊýÁУ¬
ÉèǰnÏîºÍΪSn£¬¼ÆËãµÃS16=1040£¬S17=1122£»
°´ÕÕ·½°¸¶þ£¬Ã¿ÖÜ´ÓÐÇÆÚÒ»µ½ÐÇÆÚÎå±³Ëеĵ¥´Ê³ÉµÈ±ÈÊýÁÐ{bn}£¬
ÆäÖÐb1=2£¬q=2£¬Ã¿Öܱ³Ëеĵ¥´ÊΪ2+4+8+16+32=62£¬
Ôòµ½µÚnÖܱ³Ëеĵ¥´ÊÁ¿Tn=62n£¬¼ÆËãµÃT17=1054£¬T18=1116£»
ËùÒÔ£¬Ïë½Ï¿ì±³Íêµ¥´Ê£¬Ñ¡Ôñ·½°¸Ò»±È½ÏºÏÊÊ£®
·½°¸Ò»Ã¿ÖÜËù±³µÄµ¥´Ê³ÉµÈ²îÊýÁÐ{an}£¬
ÆäÖÐa1=50£¬d=2£¬
Ôòa10=a1+£¨10-1£©d=50+£¨10-1£©¡Á2=68£¬
´Ó¶ø£¬°´ÕÕ·½°¸Ò»£¬µÚ10ÖÜÒª±³68¸öµ¥´Ê£®
£¨¢ò£©ÒòΪÔڵȲîÊýÁÐ{an}ÖУ¬d=2£¾0£¬´Ó¶øÊýÁÐ{an}Êǵ¥µ÷µÝÔöÊýÁУ¬
ÉèǰnÏîºÍΪSn£¬¼ÆËãµÃS16=1040£¬S17=1122£»
°´ÕÕ·½°¸¶þ£¬Ã¿ÖÜ´ÓÐÇÆÚÒ»µ½ÐÇÆÚÎå±³Ëеĵ¥´Ê³ÉµÈ±ÈÊýÁÐ{bn}£¬
ÆäÖÐb1=2£¬q=2£¬Ã¿Öܱ³Ëеĵ¥´ÊΪ2+4+8+16+32=62£¬
Ôòµ½µÚnÖܱ³Ëеĵ¥´ÊÁ¿Tn=62n£¬¼ÆËãµÃT17=1054£¬T18=1116£»
ËùÒÔ£¬Ïë½Ï¿ì±³Íêµ¥´Ê£¬Ñ¡Ôñ·½°¸Ò»±È½ÏºÏÊÊ£®
µãÆÀ£º±¾Ì⿼²éÁËÊýÁÐÔÚʵ¼ÊÎÊÌâÖеÄÓ¦Óã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
¼¯ºÏA={x|
¡Ü0}£¬B={y|y=ln£¨x-1£©}£¬ÔòA¡ÉBµÈÓÚ£¨¡¡¡¡£©
| x |
| x-1 |
| A¡¢[0£¬1£© | B¡¢∅ |
| C¡¢£¨0£¬1£© | D¡¢[0£¬1] |
ÒÑÖªÃüÌ⣺p£ºÔÚ¡÷ABCÖУ¬sinA£¾sinBµÄ³ä·Ö²»±ØÒªÌõ¼þÊÇA£¾B£»q£º?x¡ÊR£¬x2+2x+2¡Ü0£®ÔòÏÂÁÐÃüÌâÎªÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
| A¡¢p¡Äq | B¡¢©Vp¡Äq |
| C¡¢©Vp¡Åq | D¡¢p¡Åq |