题目内容
13.在△ABC中,三个角满足2A=B+C,且最大边与最小边分别是方程x2-12x+32=0的两根,则△ABC外接圆的面积为( )| A. | 16π | B. | 64π | C. | 124π | D. | 156π |
分析 根据2A=B+C求出A=60°,并判断出最大边与最小边,利用一元二次方程的根与系数的关系和题意,得出最大边与最小边之间的等量关系,再利用余弦定理求出边a,利用正弦定理求出外接圆的半径,再外接圆的面积即可.
解答 解:由题意得,2A=B+C,则A=60°,所以a既不是最大边也不是最小边,
不妨假设c为最大边,b为最小边,则b+c=12,bc-32,
由余弦定理得,a2=b2+c2-2bccos60°=(b+c)2-3bc=48,
解得a=4$\sqrt{3}$
由正弦定理得,2R=$\frac{a}{sinA}$=8,则R=4,
所以△ABC的外接圆面积是S=πR2=16π,
故选:A.
点评 本题考查余弦、正弦定理,内角和定理的应用,以及一元二次方程根与系数的关系和三角形三边关系,综合性较强.
练习册系列答案
相关题目
3.下列积分值为2的是( )
| A. | ${∫}_{0}^{1}$2xdx | B. | ∫01exdx | C. | ${∫}_{1}^{e}$$\frac{1}{x}$dx | D. | ∫0πsinxdx |
16.已知函数f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$-…+$\frac{{x}^{2013}}{2013}$-$\frac{{x}^{2014}}{2014}$+$\frac{{x}^{2015}}{2015}$,则下列结论正确的是( )
| A. | f(x)在(0,1)上恰有一个零点 | B. | f(x)在(0,1)上恰有两个零点 | ||
| C. | f(x)在(-1,0)上恰有一个零点 | D. | f(x)在(-1,0)上恰有两个零点 |
17.已知函数f(x)=-x3+ax2+bx+c的一个极值点是x=1,则9a+3b的最小值是( )
| A. | 10 | B. | $2\sqrt{3}$ | C. | $6\sqrt{3}$ | D. | $4\sqrt{6}$ |