题目内容

4.正项数列{an}满足:an2-(2n-1)an-2n=0.
(1)求数列{an}的通项公式an
(2)令bn=2n-1 an-n,求数列{bn}的前n项和Tn

分析 (1)解关于an的一元二次方程求出an
(2)Tn=(2•1+22•2+23•3+…+2n•n)-(1+2+3+…+n),利用裂项法求出第一部分的和,使用等差数列的求和公式求出第二部分的和.

解答 解:(1)∵an2-(2n-1)an-2n=0.
∴an=2n或an=-1.
∵an>0,
∴an=2n.
(2)bn=2n-1•2n-n=2n•n-n.
∴Tn=2•1-1+22•2-2+23•3-3+…+2n•n-n
=(2•1+22•2+23•3+…+2n•n)-(1+2+3+…+n)
=(2•1+22•2+23•3+…+2n•n)-$\frac{1+n}{2}•n$.
设2•1+22•2+23•3+…+2n•n=S,①
则22•1+23•2+24•3+…+2n•(n-1)+2n+1•n=2S,②
①-②得:-S=2+22+23+…+2n-2n+1•n=$\frac{2(1-{2}^{n})}{1-2}$-2n+1•n=2n+1-2-2n+1•n.
∴S=2n+1•n-2n+1+2,
∴Tn=S-$\frac{1+n}{2}•n$=2n+1•(n-1)-$\frac{{n}^{2}}{2}$-$\frac{n}{2}$+2.

点评 本题考查了裂项法数列求和,根据数列特点选择合理的求和方法是解决此类题目的关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网