ÌâÄ¿ÄÚÈÝ
1£®Ñ§Ï°ÕýÇк¯Êýy=tanxºó£¬¡°Êýѧ¸ç¡±ÕÔÎÄ·åͬѧÔÚ×Ô¼ºµÄ¡°Êýѧ±¦µä¡±ÖУ¬¶ÔÆäÐÔÖÊ×öÁËϵͳÊáÀí£º¢ÙÕýÇк¯ÊýÊÇÖÜÆÚº¯Êý£¬×îСÕýÖÜÆÚÊǦУ»¢ÚÕýÇк¯ÊýÊÇÆæº¯Êý£»¢Ûº¯ÊýµÄÖµÓòÊÇʵÊý¼¯R£¬ÔÚ¶¨ÒåÓòÄÚÎÞ×î´óÖµºÍ×îСֵ£»¢ÜÕýÇк¯Êý²»´æÔÚµ¥µ÷µÝ¼õÇø¼ä£»¢ÝÓëÕýÇÐÇúÏß²»ÏཻµÄÖ±ÏßÊÇx=$\frac{¦Ð}{2}$+k¦Ð£¬k¡ÊZ£»¢ÞÕýÇÐÇúÏßÊÇÖÐÐĶԳÆÍ¼ÐΣ¬Æä¶Ô³ÆÖÐÐÄ×ø±êÊÇ£¨$\frac{k¦Ð}{2}$£¬0£©£¬k¡ÊZ£®ÒÔÉÏÂÛ¶ÏÖÐÕýÈ·µÄÓУ¨¡¡¡¡£©| A£® | 3¸ö | B£® | 4¸ö | C£® | 5¸ö | D£® | 6¸ö |
·ÖÎö ×÷³öÕýÇк¯ÊýµÄͼÏó£¬ÊýÐνáºÏ½øÐÐÅжÏÄÜÇó³ö½á¹û£®
½â´ð
½â£º×÷³öÕýÇк¯ÊýµÄͼÏó£¬ÈçÓÒͼ£º
¢ÙÓÉÕýÇк¯ÊýµÄͼÏóµÃµ½£ºÕýÇк¯ÊýÊÇÖÜÆÚº¯Êý£¬×îСÕýÖÜÆÚÊǦУ¬¹Ê¢ÙÕýÈ·£»
¢ÚÓÉÕýÇк¯ÊýµÄͼÏó¹ØÓÚÔµã¶Ô³Æ£¬µÃµ½ÕýÇк¯ÊýÊÇÆæº¯Êý£¬¹Ê¢ÚÕýÈ·£»
¢ÛÕýÇк¯ÊýµÄÖµÓòÊÇʵÊý¼¯R£¬ÔÚ¶¨ÒåÓòÄÚÎÞ×î´óÖµºÍ×îСֵ£¬¹Ê¢ÛÕýÈ·£»
¢ÜÕýÇк¯ÊýÔÚ£¨k$¦Ð-\frac{¦Ð}{2}$£¬$k¦Ð+\frac{¦Ð}{2}$£©£¬k¡ÊZÄÚÊÇÔöº¯Êý£¬²»´æÔÚµ¥µ÷µÝ¼õÇø¼ä£¬¹Ê¢ÜÕýÈ·£»
¢Ýx=$\frac{¦Ð}{2}$+k¦Ð£¬k¡ÊZÓëÕýÇÐÇúÏß²»Ïཻ£¬¹Ê¢ÝÕýÈ·£»
¢ÞÕýÇÐÇúÏßÊÇÖÐÐĶԳÆÍ¼ÐΣ¬Æä¶Ô³ÆÖÐÐÄ×ø±êÊÇ£¨$\frac{k¦Ð}{2}$£¬0£©£¬k¡ÊZ£¬¹Ê¢ÞÕýÈ·£®
¹ÊÑ¡£ºD£®
µãÆÀ ±¾Ì⿼²éÃüÌâÕæ¼ÙµÄÅжϣ¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÕýÇк¯ÊýµÄͼÏó¼°ÐÔÖʵĺÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
11£®ÒÑÖªa£¬b¡ÊR£¬ÏÂÁнáÂÛ³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
| A£® | Èôa£¼b£¬Ôòac£¼bc | B£® | Èôa£¼b£¬c£¼d£¬Ôòac£¼bd | ||
| C£® | Èôa£¼b£¼0£¬Ôò$\frac{1}{a}$£¾$\frac{1}{b}$ | D£® | Èôa£¼b£¬Ôòan£¼bn£¨n¡ÊN*£¬n¡Ý2£© |
16£®²»µÈʽ4x2+4bx+1¡Ü0µÄ½â¼¯Îª∅£¬Ôò£¨¡¡¡¡£©
| A£® | b£¼1 | B£® | b£¾-1»òb£¼1 | C£® | -1£¼b£¼1 | D£® | b£¾1»òb£¼-1 |
6£®µãP£¨5£¬0£©ÓëÔ²x2+y2=24µÄλÖùØÏµÊÇ£¨¡¡¡¡£©
| A£® | ÔÚÔ²ÄÚ | B£® | ÔÚÔ²Íâ | C£® | ÔÚÔ²ÉÏ | D£® | ²»È·¶¨ |
13£®cos35¡ãcos70¡ã-sin35¡ãcos20¡ãµÈÓÚ£¨¡¡¡¡£©
| A£® | $\frac{\sqrt{6}+\sqrt{2}}{4}$ | B£® | -$\frac{\sqrt{6}+\sqrt{2}}{4}$ | C£® | $\frac{\sqrt{6}-\sqrt{2}}{4}$ | D£® | $\frac{\sqrt{2}-\sqrt{6}}{4}$ |