题目内容
7.已知函数f(x)=aln(x+1)-x2,若对?p,q∈(0,1),且p≠q,有$\frac{{f({p+1})-f({q+1})}}{p-q}>2$恒成立,则实数a的取值范围为( )| A. | (-∞,18) | B. | (-∞,18] | C. | [18,+∞) | D. | (18,+∞) |
分析 $\frac{{f({p+1})-f({q+1})}}{p-q}>2$恒成立$?\frac{{f({p+1})-f({q+1})}}{{({p+1})-({q+1})}}>2$恒成立?'f(x+1)≥2恒成立,即$\frac{a}{x+2}-2({x+1})≥2({0<x<1})$恒成立,分离参数,求最值,即可求出实数a的取值范围.
解答 解:因为f(x)=aln(x+1)-x2,所以f(x+1)=aln[(x+1)+1]-(x+1)2,
所以$f'({x+1})=\frac{a}{x+2}-2({x+1})$.
因为p,q∈(0,1),且p≠q,所以$\frac{{f({p+1})-f({q+1})}}{p-q}>2$恒成立$?\frac{{f({p+1})-f({q+1})}}{{({p+1})-({q+1})}}>2$恒成立
?'f(x+1)≥2恒成立,即$\frac{a}{x+2}-2({x+1})≥2({0<x<1})$恒成立,
所以a>2(x+2)2(0<x<1)恒成立,
又因为x∈(0,1)时,8<2(x+2)2<18,所以a≥18.
故选:C.
点评 本题考查导数知识的运用,考查恒成立问题,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
17.某几何体的三视图如图所示,则该几何体的体积为( )

| A. | ${\frac{5}{6}_{\;}}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
2.已知全集U=R,集合M={x||x|<1},N={y|y=2x,x∈R},则集合∁U(M∪N)等于( )
| A. | (-∞,-1] | B. | (-1,2) | C. | (-∞,-1]∪[2,+∞) | D. | [2,+∞) |
12.某届奥运会上,中国队以26金18银26铜的成绩称金牌榜第三、奖牌榜第二,某校体育爱好者在高三 年级一班至六班进行了“本届奥运会中国队表现”的满意度调查(结果只有“满意”和“不满意”两种),从被调查的学生中随机抽取了50人,具体的调查结果如表:
(1)在高三年级全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;
(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为ξ,求随机变量ξ的分布列及数学期望.
| 班号 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
| 频数 | 5 | 9 | 11 | 9 | 7 | 9 |
| 满意人数 | 4 | 7 | 8 | 5 | 6 | 6 |
(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为ξ,求随机变量ξ的分布列及数学期望.
19.
一个几何体的三视图如图所示,其中正视图和侧视图相同,其上部分是半圆,下部分是边长为2的正方形;俯视图是边长为2的正方形及其外接圆.则该几何体的体积为( )
| A. | $4+\frac{2π}{3}$ | B. | $4+\frac{{2\sqrt{2}π}}{3}$ | C. | $8+\frac{{4\sqrt{2}π}}{3}$ | D. | $8+\frac{{8\sqrt{2}π}}{3}$ |