题目内容
如果复数z1=a+6i,z2=3-4i,且
为纯虚数,那么实数a的值为( )
| z1 |
| z2 |
A、-
| ||
| B、0 | ||
| C、2 | ||
| D、8 |
考点:复数代数形式的乘除运算
专题:数系的扩充和复数
分析:利用复数代数形式的乘除运算化简,由实部等于0且虚部不等于0求得a的值.
解答:
解:∵z1=a+6i,z2=3-4i,
又
=
=
=
为纯虚数,
∴
,解得a=8.
故选:D.
又
| z1 |
| z2 |
| a+6i |
| 3-4i |
| (a+6i)(3+4i) |
| (3-4i)(3+4i) |
| (3a-24)+(4a+18)i |
| 5 |
∴
|
故选:D.
点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
练习册系列答案
相关题目
在△ABC中,若b=2
,tanB=2
,sinB=2
sinC,则a=( )
| 2 |
| 2 |
| 2 |
A、
| ||
| B、B、3 | ||
C、3或
| ||
D、2或
|
在直角坐标系xOy中,圆C的参数方程
(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系,则圆C的极坐标方程是( )
|
| A、ρ=2cosθ |
| B、ρ=2sinθ |
| C、ρ=cosθ |
| D、ρ=sinθ |
已知函数sgn(x)=
,则sgn(sgn(a2-a+1))的值是( )
|
| A、a2-a+1 |
| B、1 |
| C、0 |
| D、-1 |
下列函数中,f(x)是偶函数的是( )
| A、f(x)=2|x|-1 |
| B、f(x)=x2,x∈[-2,2) |
| C、f(x)=x2+x |
| D、f(x)=x3 |
设A(3,2,1),B(1,0,5),C(0,0,1),则AB的中点M到点C的距离为( )
| A、1 | B、2 | C、3 | D、4 |