题目内容

12.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AB∥CD,∠ADC=90°,$AD=AB=\frac{1}{2}CD=1$,PA⊥平面ABCD,E为PD中点,且PC⊥AE.
(1)求证:PA=AD;
(2)求点A到平面PBC的距离.

分析 (1)证明AE⊥平面PCD,AE⊥PD,利用E为PD中点P,可得A=AD;
(2)利用等体积方法,求点A到平面PBC的距离.

解答 (1)证明:∵PA⊥平面ABCD,CD?平面ABCD,
∴PA⊥CD,
∵CD⊥AD,PA∩AD=A,
∴CD⊥平面PAD,
∵AE?平面PAD,
∴AE⊥CD,
∵PC⊥AE,PC∩CD=C,
∴AE⊥平面PCD,
∵PD?平面PCD,
∴AE⊥PD,
∵E为PD中点,
∴PA=AD;
(2)解:由题意,PA=AD=1,S△ABC=$\frac{1}{2}×1×1$=$\frac{1}{2}$,
△PBC中,PB=CB=$\sqrt{2}$,PC=$\sqrt{6}$,∴S△PBC=$\frac{1}{2}×\sqrt{6}×\sqrt{2-\frac{3}{2}}$=$\frac{\sqrt{3}}{2}$
设点A到平面PBC的距离为h,则$\frac{1}{3}×\frac{1}{2}×1=\frac{1}{3}×\frac{\sqrt{3}}{2}h$,∴h=$\frac{\sqrt{3}}{3}$.

点评 本题考查线面垂直的判定与性质,考查点到平面距离的计算,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网