题目内容

18.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,且PA=AD=2,$BD=2\sqrt{2}$,E、F分别为AD、PC中点.
(1)求点F到平面PAB的距离;
(2)求证:平面PCE⊥平面PBC;
(3)求二面角E-PC-D的大小.

分析 (1)取PB中点G,连接FG、AG,由已知可得底面ABCD为正方形,再由E、F分别为AD、PC中点,可得四边形AEFG为平行四边形,得到AG∥FE,由线面平行的判定可得EF∥平面PAB,从而得到点F与点E到平面PAB的距离相等,即距离为EA=1;
(2)由(1)知,AG⊥PB,AG∥EF,再由PA⊥平面ABCD,可得BC⊥PA,由线面垂直的判定可得BC⊥平面PAB,得到BC⊥AG,进一步得到AG⊥平面PBC,则EF⊥平面PBC,由面面垂直的判定可得平面PCE⊥平面PBC;
(3)作EM⊥PD于M,连接FM,由CD⊥平面PAD,得CD⊥EM,进一步得到EM⊥PC.结合(2)知,EF⊥平面PBC,即EF⊥PC,可得FM⊥PC,从而得到∠MFE为二面角E-PC-D的平面角或其补角.然后求解三角形可得二面角E-PC-D的大小为30°.

解答 (1)解:如图,取PB中点G,连接FG、AG,
∵底面ABCD为菱形,且PA=AD=2,BD=$2\sqrt{2}$,∴底面ABCD为正方形,
∵E、F分别为AD、PC中点,∴FG∥BC,FG=$\frac{1}{2}BC$,AE∥BC,AE=$\frac{1}{2}BC$,
则FG∥AE且FG=AE,四边形AEFG为平行四边形,故AG∥FE,
∵AG?平面PAB,EF?平面PAB,∴EF∥平面PAB,
∴点F与点E到平面PAB的距离相等,即距离为EA=1;
(2)证明:由(1)知,AG⊥PB,AG∥EF,
∵PA⊥平面ABCD,∴BC⊥PA,
∵BC⊥AB,AB∩BC=B,∴BC⊥平面PAB,
∴BC⊥AG,又PB∩BC=B,
∴AG⊥平面PBC,则EF⊥平面PBC,
∵EF?平面PCE,∴平面PCE⊥平面PBC;
(3)解:作EM⊥PD于M,连接FM,
∵CD⊥平面PAD,∴CD⊥EM,
∴EM⊥平面PCD,则EM⊥PC.
由(2)知,EF⊥平面PBC,∴EF⊥PC,
又EM∩EF=E,∴PC⊥平面EFM,
∴FM⊥PC,
∴∠MFE为二面角E-PC-D的平面角或其补角.
∵PA=AD=2,∴EF=AG=$\sqrt{2}$,EM=$\frac{\sqrt{2}}{2}$.
∴sin∠MEF=$\frac{EM}{EF}=\frac{1}{2}$,则∠MFE=30°.
即二面角E-PC-D的大小为30°.

点评 本题考查平面与平面垂直的判定,考查了空间想象能力和思维能力,训练了二面角的平面角的求法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网