题目内容

10.已知动点P与两个顶点M(1,0),N(4,0)的距离的比为$\frac{1}{2}$.
(I)求动点P的轨迹方程;
(II)若点A(-2,-2),B(-2,6),C(-4,2),是否存在点P,使得|PA|2+|PB|2+|PC|2=36.若存在,求出点P的坐标;若不存在,说明理由.

分析 (I)利用直接法,求动点P的轨迹方程;
(II)由|PA|2+|PB|2+|PC|2=36,可得3x2+3y2+16x-12y+32=0,得出公共弦的方程,即可得出结论.

解答 解:(I)设P(x,y),则
∵动点P与两个顶点M(1,0),N(4,0)的距离的比为$\frac{1}{2}$,
∴2$\sqrt{(x-1)^{2}+{y}^{2}}$=$\sqrt{(x-4)^{2}+{y}^{2}}$,
∴x2+y2=4,即动点P的轨迹方程是x2+y2=4;
(II)由|PA|2+|PB|2+|PC|2=36,可得(x+2)2+(y+2)2+(x+2)2+(y-6)2+(x+4)2+(y-2)2=36,
∴3x2+3y2+16x-12y+32=0,
∵x2+y2=4,
∴4x-3y+11=0,
圆心到直线4x-3y+11=0的距离d=$\frac{11}{5}$>2,
∴直线与圆相离,
∴不存在点P,使得|PA|2+|PB|2+|PC|2=36.

点评 本题考查轨迹方程,考查圆与圆的位置关系,考查点到直线的距离公式,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网