题目内容

6.已知函数f(x)=|x-1|-|x+2|.
(Ⅰ)求不等式-2<f(x)<0的解集A;
(Ⅱ)若m,n∈A,证明:|1-4mn|>2|m-n|.

分析 (Ⅰ)根据f(x)的解析式,求得不等式-2<f(x)<0的解集A.
(Ⅱ)由(Ⅰ)可知,${m^2}<\frac{1}{4},{n^2}<\frac{1}{4}$,故要证明|1-4mn|>2|m-n|,只要证明左边的平方大于右边的平方即可.

解答 解:(Ⅰ)依题意,$f(x)=|{x-1}|-|{x+2}|=\left\{\begin{array}{l}3,x≤-2\\-2x-1,-2<x<1\\-3,x≥1\end{array}\right.$,
由不等式-2<f(x)<0,可得-2<-2x-1<0,解得$-\frac{1}{2}<x<\frac{1}{2}$,故$A=(-\frac{1}{2},\frac{1}{2})$.
(Ⅱ)由(Ⅰ)可知,${m^2}<\frac{1}{4},{n^2}<\frac{1}{4}$;
因为|1-4mn|2-4|m-n|2=(1-8mn+16m2n2)-4(m2-2mn+n2)=(4m2-1)(4n2-1)>0,
故|1-4mn|2>4|m-n|2,故|1-4mn|>2|m-n|.

点评 本题主要考查带有绝对值的函数,绝对值不等式的解法,证明不等式的方法,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网