题目内容

已知函数f(x)=x2-4x-4的定义域为[t-2,t-1],对任意t∈R,求函数f(x)的最小值g(t)的解析式.
考点:二次函数在闭区间上的最值
专题:函数的性质及应用
分析:讨论区间[t-2,t-1]和f(x)对称轴x=2的关系,根据f(x)的单调性及顶点即可求出f(x)的最小值g(t).
解答: 解:f(x)=x2-4x-4=(x-2)2-8;
若t-1≤2,即t≤3,f(x)在[t-2,t-1]上单调递减,∴g(t)=f(t-1)=t2-6t+1;
若t-2<2<t-1,即3<t<4,g(t)=f(2)=-8;
若t-2≥2,即t≥4,f(x)在[t-2,t-1]上单调递增,∴g(t)=f(t-2)=t2-8t+8;
g(t)=
t2-6t+1t≤3
-83<t<4
t2-8t+8t≥4
点评:考查二次函数单调性和对称轴的关系,以及根据单调性及抛物线的顶点求最值的方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网