题目内容

函数y=(
1
2
)
lgcosx
的单调递减区间是
 
考点:复合函数的单调性
专题:函数的性质及应用
分析:由指数函数为减函数,要求复合函数的减区间,需求指数的增区间,指数中对数函数是增函数,则需要求满足
cosx大于0的增区间,则答案可求.
解答: 解:要求函数y=(
1
2
)
lgcosx
的单调递减区间,
需求函数lgcosx的增区间,
也就数满足cosx大于0的增区间,
由余弦函数的增区间可得:函数y=(
1
2
)
lgcosx
的单调递减区间是(2kπ-
π
2
,2kπ],k∈Z.
故答案为:(2kπ-
π
2
,2kπ],k∈Z.
点评:本题考查复合函数的单调性,指数函数和对数函数的单调性,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网