题目内容

阅读下面材料:根据两角和与差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ----------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
令α+β=A,α-β=B有α=
A+B
2
,β=
A-B
2
代入③得 sinA+sinB=2sin
A+B
2
cos
A-B
2

(1)利用上述结论,试求sin15°+sin75°的值.
(2)类比上述推证方法,根据两角和与差的余弦公式,证明:cosA-cosB=-2sin
A+B
2
sin
A-B
2
考点:进行简单的合情推理
专题:综合题,推理和证明
分析:(1)利用sinA+sinB=2sin
A+B
2
cos
A-B
2
,代入计算,即可求sin15°+sin75°的值.
(2)通过两角和与差的余弦公式,令α+β=A,α-β=B有α=
A+B
2
,β=
A+B
2
,即可证明结果
解答: 解:(1)由题可得sin15°+sin75°=2sin
150+750
2
cos
150-750
2
=2sin450cos(-300)=
6
2
.--------(3分)
(2)根据两角和与差的余弦公式,有:
cos(α+β)=cosαcosβ-sinαsinβ…①
cos(α-β)=cosαcosβ+sinαsinβ…②
由①-②得cos(α+β)-cos(α-β)=-2sinαsinβ…③
令α+β=A,α-β=B有α=
A+B
2
,β=
A+B
2

代入③得cosA-cosB=-2sin
A+B
2
sin
A+B
2
--------(8分)
点评:本小题主要考查两角和与差三角函数公式、二倍角公式、三角函数的恒等变换等基础知识,考查推理论证能力,运算求解能力,考查化归与转化思想等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网