题目内容

2.某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时. 假定每天至多可获取鲜牛奶15吨,问该厂每天生产A,B两种奶制品各多少吨时,该厂获利最大.

分析 设每天A,B两种产品的生产数量分别为x,y,相应的获利为z,建立约束条件和目标函数,作出不等式组对应的平面区域利用线性回归的知识进行求解即可.

解答 解:设每天A,B两种产品的生产数量分别为x,y,相应的获利为z,则有$\left\{{\begin{array}{l}{2x+1.5y≤15}\\{x+1.5y≤12}\\{2x-y≥0}\\{x≥0,y≥0}\end{array}}\right.$…(4分)
目标函数为z=1000x+1200y.              …(5分)

述不等式组表示的平面区域如图,阴影部分(含边界)即为可行域.…(7分)
作直线l:1000x+1200y=0,即直线x+1.2y=0.把直线l向右上方平移
到l1的位置,直线l1经过可行域上的点B,此时z=1000x+1200y取得最大值.…(8分)
由$\left\{\begin{array}{l}x-2y=0\\ 2x+1.5y=15\end{array}\right.$  解得点M的坐标为(3,6).…(10分)
∴当x=3,y=6时,zmax=3×1000+6×1200=10200(元).
答:该厂每天生产A奶制品3吨,B奶制品6吨,可获利最大为10200元.…(12分)

点评 本题主要考查线性规划的应用问题,设出变量建立约束条件和目标函数,利用数形结合是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网