题目内容

6.在等差数列{an}中,a1=1,其前n项和为Sn,若$\left\{{\frac{S_n}{n}}\right\}$为公差是1的等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列${b_n}=\frac{1}{{{a_n}{a_{n+2}}}}$,求数列{bn}的前n项和Tn

分析 (Ⅰ)设{an}的公差为d,运用等差数列的通项公式和求和公式,以及定义,解得d=2,进而得到通项公式;
(Ⅱ)由(Ⅰ)知:${b_n}=\frac{1}{{({2n-1})({2n+3})}}=\frac{1}{4}({\frac{1}{2n-1}-\frac{1}{2n+3}})$.运用数列的求和方法:裂项相消求和,化简整理即可得到所求和.

解答 解:(Ⅰ)设{an}的公差为d,由a1=1,an=1+(n-1)d=nd+1-d,
若$\left\{{\frac{S_n}{n}}\right\}$为公差是1的等差数列,
则$\frac{{S}_{n}}{n}$=$\frac{1}{2}$nd+1-$\frac{1}{2}$d,
当n≥2时,$\frac{{S}_{n}}{n}$-$\frac{{S}_{n-1}}{n-1}$=$\frac{1}{2}$d=1,解得d=2,
则an=2n-1,n∈N*;
(Ⅱ)由(Ⅰ)知:${b_n}=\frac{1}{{({2n-1})({2n+3})}}=\frac{1}{4}({\frac{1}{2n-1}-\frac{1}{2n+3}})$.
∴${T_n}=\frac{1}{4}({1-\frac{1}{5}+\frac{1}{3}-\frac{1}{7}+\frac{1}{5}-\frac{1}{9}+…+\frac{1}{2n-1}-\frac{1}{2n+3}})$=$\frac{1}{4}({\frac{4}{3}-\frac{1}{2n+1}-\frac{1}{2n+3}})$
=$\frac{1}{3}-\frac{n+1}{{({2n+1})({2n+3})}}$(n∈N*).

点评 本题考查等差数列的通项公式和求和公式的运用,考查方程思想,以及数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网