题目内容

11.设f′(x)是函数f(x)的导函数,且f′(x)>2f(x)(x∈R),f($\frac{1}{2}$)=e(e为自然对数的底数),则不等式f(lnx)<x2的解集为(  )
A.(0,$\frac{e}{2}$)B.(0,$\sqrt{e}$)C.($\frac{1}{e}$,$\frac{e}{2}$)D.($\frac{e}{2}$,$\sqrt{e}$)

分析 构造函数F(x)=$\frac{f(x)}{{e}^{2x}}$,求出导数,判断F(x)在R上递增.原不等式等价为F(lnx)<F($\frac{1}{2}$),运用单调性,可得lnx<$\frac{1}{2}$,运用对数不等式的解法,即可得到所求解集.

解答 解:可构造函数F(x)=$\frac{f(x)}{{e}^{2x}}$,
F′(x)=$\frac{f(x){e}^{2x}-2f(x){e}^{2x}}{({e}^{2x})^{2}}$=$\frac{f′(x)-2f(x)}{{e}^{2x}}$,
由f′(x)>2f(x),可得F′(x)>0,即有F(x)在R上递增.
不等式f(lnx)<x2即为$\frac{f(lnx)}{{x}^{2}}$<1,(x>0),即$\frac{f(lnx)}{{e}^{2lnx}}$<1,x>0.
即有F($\frac{1}{2}$)=$\frac{f(\frac{1}{2})}{e}$=1,即为F(lnx)<F($\frac{1}{2}$),
由F(x)在R上递增,可得lnx<$\frac{1}{2}$,解得0<x<$\sqrt{e}$.
故不等式的解集为(0,$\sqrt{e}$),
故选:B.

点评 本题考查导数的运用:求单调性,考查构造法的运用,以及单调性的运用,对数不等式的解法,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网