ÌâÄ¿ÄÚÈÝ
ijͬѧÔÚÒ»´ÎÑо¿ÐÔѧϰÖз¢ÏÖ£¬ÒÔÏÂÎå¸öʽ×ÓµÄÖµ¶¼µÈÓÚͬһ¸ö³£Êý£º
¢Ùsin213¡ã£«cos217¡ã£sin13¡ãcos17¡ã£»
¢Úsin215¡ã£«cos215¡ã£sin15¡ãcos15¡ã£»
¢Ûsin218¡ã£«cos212¡ã£sin18¡ãcos12¡ã£»
¢Üsin2(£18¡ã)£«cos248¡ã£sin(£18¡ã)cos48¡ã£»
¢Ýsin2(£25¡ã)£«cos255¡ã£sin(£25¡ã)cos55¡ã.
(1)ÊÔ´ÓÉÏÊöÎå¸öʽ×ÓÖÐÑ¡ÔñÒ»¸ö£¬Çó³öÕâ¸ö³£Êý£»
(2)¸ù¾Ý(1)µÄ¼ÆËã½á¹û£¬½«¸ÃͬѧµÄ·¢ÏÖÍÆ¹ãΪÈý½ÇºãµÈʽ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
½â·¨1£º(1)Ñ¡Ôñ¢Úʽ£¬¼ÆËãÈçÏ£º
sin215¡ã£«cos215¡ã£sin15¡ãcos15¡ã
£½1£
sin30¡ã£½1£
£½
.
(2)Èý½ÇºãµÈʽΪsin2¦Á£«cos2(30¡ã£¦Á)£sin¦Ácos(30¡ã£¦Á)£½
.
Ö¤Ã÷ÈçÏ£º
sin2¦Á£«cos2(30¡ã£¦Á)£sin¦Ácos(30¡ã£¦Á)
£½sin2¦Á£«(cos30¡ãcos¦Á£«sin30¡ãsin¦Á)2£sin¦Á(cos30¡ãcos¦Á£«sin30¡ãsin¦Á)
£½sin2¦Á£«
cos2¦Á£«
sin¦Ácos¦Á£«
sin2¦Á£
sin¦Ácos¦Á£
sin2¦Á£½
sin2¦Á£«
cos2¦Á£½
.
½â·¨2£º
(1)ͬ½â·¨1.
(2)Èý½ÇºãµÈʽΪsin2¦Á£«cos2(30¡ã£¦Á)£sin¦Ácos(30¡ã£¦Á)£½
.
Ö¤Ã÷ÈçÏ£º
sin2¦Á£«cos2(30¡ã£¦Á)£sin¦Ácos(30¡ã£¦Á)
£½
£«
£sin¦Á(cos30¡ãcos¦Á£«sin30¡ãsin¦Á)
£½
£
cos2¦Á£«
£«
(cos60¡ãcos2¦Á£«sin60¡ãsin2¦Á)£
sin¦Ácos¦Á£
sin2¦Á
£½
£
cos2¦Á£«
£«
cos2¦Á£«
sin2¦Á£
sin2¦Á£
(1£cos2¦Á)
£½1£
cos2¦Á£
£«
cos2¦Á
£½
.