题目内容
已知Sn是正项数列{an}的前n项和,且Sn=
an2+
an-
(1)求数列{an}的通项公式;
(2)若an=2nbn,求数列{bn}的前n项和.
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
(1)求数列{an}的通项公式;
(2)若an=2nbn,求数列{bn}的前n项和.
考点:数列的求和
专题:计算题,等差数列与等比数列
分析:(1)运用an=
即可求出an;
(2)运用数列的求和方法:错位相减法,即可求出数列{bn}的前n项和.
|
(2)运用数列的求和方法:错位相减法,即可求出数列{bn}的前n项和.
解答:
解:(1)∵Sn=
an2+
an-
,
∴Sn-1=
an-12+
an-1-
,
∴an=Sn-Sn-1=
(an2-an-12)+
(an-an-1)(n≥2),
∵正项数列{an},
∴an-an-1=2,易得a1=3,
∴an=2n+1;
(2)∵an=2nbn
∴bn=
=
∴Tn=
+
+…+
Tn=
+
+…+
+
上面两式相减得,
Tn=
+
+
+…+
-
=
+2•
-
,
∴Tn=5-(2n+5)
.
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
∴Sn-1=
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
∴an=Sn-Sn-1=
| 1 |
| 4 |
| 1 |
| 2 |
∵正项数列{an},
∴an-an-1=2,易得a1=3,
∴an=2n+1;
(2)∵an=2nbn
∴bn=
| an |
| 2n |
| 2n+1 |
| 2n |
∴Tn=
| 2×1+1 |
| 21 |
| 2×2+1 |
| 22 |
| 2n+1 |
| 2n |
| 1 |
| 2 |
| 2×1+1 |
| 22 |
| 2×2+1 |
| 23 |
| 2(n-1)+1 |
| 2n |
| 2n+1 |
| 2n+1 |
上面两式相减得,
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 22 |
| 2 |
| 23 |
| 2 |
| 2n |
| 2n+1 |
| 2n |
=
| 3 |
| 2 |
1-(
| ||
1-
|
| 2n+1 |
| 2n+1 |
∴Tn=5-(2n+5)
| 1 |
| 2n |
点评:本题考查数列的通项的求法和求和方法,主要考查运用an与Sn的关系式和错位相减法,属于中档题.
练习册系列答案
相关题目