题目内容
在△ABC中,(a+b+c)(a+b-c)=3ab,2cosAsinB=sinC,则△ABC的形状是( )
| A、等边三角形 |
| B、等腰三角形 |
| C、直角三角形 |
| D、等腰直角三角形 |
考点:余弦定理,正弦定理
专题:计算题,解三角形
分析:由已知2cosAsinB=sinC=sin(A+B),结合和差角公式可求得A=B,由(a+b+c)(a+b-c)=3ab,可得a2+b2-c2=ab,利用余弦定理可得C,从而可判断三角形的形状.
解答:
解:由三角形的内角和公式可得,2cosAsinB=sinC=sin(A+B)
∴2cosAsinB=sinAcosB+sinBcosA
∴sinAcosB-sinBcosA=0,
∴sin(A-B)=0,∴A=B
∵(a+b+c)(a+b-c)=3ab
∴(a+b)2-c2=3ab
即a2+b2-c2=ab
由余弦定理可得cosC=
=
∵0<C<π,∴C=
,∴A=B=C=
故△ABC为等边三角形,
故选:A.
∴2cosAsinB=sinAcosB+sinBcosA
∴sinAcosB-sinBcosA=0,
∴sin(A-B)=0,∴A=B
∵(a+b+c)(a+b-c)=3ab
∴(a+b)2-c2=3ab
即a2+b2-c2=ab
由余弦定理可得cosC=
| a2+b2-c2 |
| 2ab |
| 1 |
| 2 |
∵0<C<π,∴C=
| π |
| 3 |
| π |
| 3 |
故△ABC为等边三角形,
故选:A.
点评:本题考查两角和与差的三角公式及余弦定理解三角形,解题的关键是熟练掌握三角基本公式.
练习册系列答案
相关题目
4名同学参加跳高,跳远和100米跑三项决赛,争夺这三项冠军,则冠军结果有( )
| A、34种 | ||
| B、43种 | ||
C、
| ||
D、
|
已知点O是边长为1的等边△ABC的外心,则(
+
)•(
+
)等于( )
| OA |
| OB |
| OA |
| OC |
A、
| ||||
B、-
| ||||
C、-
| ||||
D、-
|
(A题)下列求导运算正确的是( )
A、(x+
| ||||
| B、(3x)′=3xlog3e | ||||
C、(log2x)′=
| ||||
| D、(x2cos x)′=-2xsin x |
已知a>0且a≠1,f(x)=x2-ax,当x∈(-1,1)时均有f(x)<
,则实数a的取值范围是( )
| 1 |
| 2 |
A、0<a≤
| ||
B、
| ||
C、
| ||
D、0<a≤
|
函数y=
+
的定义域是( )
| x(x+1) |
| x |
| A、{x|x≥0} |
| B、{x|x≥1} |
| C、{x|x≥0}∪{0} |
| D、{x|0≤x≤1} |
| MG |
| GN |
| OG |
| OA |
| OB |
| OC |
A、x=
| ||||||
B、x=
| ||||||
C、x=
| ||||||
D、x=
|