题目内容
已知以原点为顶点的抛物线C,焦点在x轴上,直线x-y=0与抛物线C交于A、B两点.若P(2,2)为AB的中点,则抛物线C的方程为 .
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:先根据题意设出抛物线的标准方程,与直线方程联立消去y,利用韦达定理求得xA+xB的表达式,根据AB中点的坐标可求得xA+xB的,继而p的值可得.
解答:
解:设抛物线方程为y2=2px,
直线与抛物线方程联立求得x2-2px=0
∴xA+xB=2p
∵xA+xB=2×2=4
∴p=2,
∴抛物线C的方程为y2=4x.
故答案为:y2=4x.
直线与抛物线方程联立求得x2-2px=0
∴xA+xB=2p
∵xA+xB=2×2=4
∴p=2,
∴抛物线C的方程为y2=4x.
故答案为:y2=4x.
点评:本题主要考查了抛物线的标准方程,直线与抛物线的关系.考查了考生基础知识的理解和熟练应用.
练习册系列答案
相关题目