题目内容
14.已知等比数列{an}的前n项和为Sn,则下列一定成立的是( )| A. | 若a4>0,则a2016<0 | B. | 若a5>0,则a2015<0 | ||
| C. | 若a4>0,则S2016>0 | D. | 若a5>0,则S2015>0 |
分析 当a5=a1q4>0时,a1>0,分当q<0时,当0<q<1时,当q>1时,和q=1时由不等式的性质可得S2015>0.
解答 解:当a5=a1q4>0时,a1>0,
又当q≠1时,S2015=$\frac{{a}_{1}(1-{q}^{2015})}{1-q}$,
∴当q<0时,1-q>0,1-q2015>0,
∴$\frac{{a}_{1}(1-{q}^{2015})}{1-q}$>0,即S2015>0;
当0<q<1时,1-q>0,1-q2015>0,
∴$\frac{{a}_{1}(1-{q}^{2015})}{1-q}$>0,即S2015>0;
当q>1时,1-q<0,1-q2015<0,
∴$\frac{{a}_{1}(1-{q}^{2015})}{1-q}$>0,即S2015>0;
当q=1时,S2015=2015a5>0.
综上可得当a5>0时,S2015>0.
故选:D.
点评 本题考查等比数列的求和公式,涉及分类讨论的思想和不等式的性质,属中档题.
练习册系列答案
相关题目
4.四棱锥A-BCDE,底面BCDE为梯形,EB∥DC,DC⊥平面ABC,AC=BC=EB=2DC,∠ACB=90°,AD与平面ABE所成角的正弦值为( )
| A. | $\frac{\sqrt{10}}{5}$ | B. | $\frac{\sqrt{5}}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
5.设命题p:?x∈R,x2>0,q:?x∈R,x2+x+2=0,则正确结论是( )
| A. | p真q假 | B. | p假q真 | C. | “p∨q”为假 | D. | “p∧q”为真 |
19.命题p:若(x-1)2≤0,则x=1,命题q:2π是函数y=tanx的最小正周期,则下列说法中正确的是( )
| A. | ¬p为真 | B. | ¬q为真 | C. | p∨q为假 | D. | p∧q为真 |
18.已知f(x)是定义在实数集R上的偶函数,且在(0,+∞)上递增,则( )
| A. | f(20.7)<f(-log25)<f(-3) | B. | f(-3)<f(20.7)<f(-log25) | ||
| C. | f(-3)<f(-log25)<f(20.7) | D. | f(20.7)<f(-3)<f(-log25) |