题目内容
3.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得到如下频数分布表.| 质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125] |
| 频数 | 6 | 26 | x | 22 | 8 |
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计这种产品质量指标值的平均数$\overline{x}$及方差s2;
(3)当质量指标值位于(79.6,120.4)时,认为该产品为合格品.由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数$\overline{x}$,σ2近似为样本方差s2(每组数取中间值).
①利用该正态分布,求从该厂生产的产品中任取一件,该产品为合格品的概率;
②该企业每年生产这种产品10万件,生产一件合格品利润10元,生产一件不合格品亏损20元,则该企业的年利润是多少?
(提示:$\sqrt{104}$≈10.2,若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544)
分析 (1)由已知作出频率分布表,由此能作出作出这些数据的频率分布直方图;
(2)求出质量指标值的样本平均数、质量指标值的样本方差;
(3)运用离散型随机变量的期望和方差公式,即可求出;
①由(2)知Z~N(100,104),从而求出P(79.6<Z<120.4),注意运用所给数据;
②设这种产品每件利润为随机变量E(X),即可求得EX.
解答 解:(1)由频率分布表作出这些数据的频率分布直方图为:![]()
(2)质量指标值的样本平均数为:
$\overline{x}$=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.
质量指标值的样本方差为
S2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.
(3)①由(2)知Z~N(100,104),从而P(79.6<Z<120.4)=P(100-2×10.2<Z<100+2×10.2)=0.9544;
②由①知一件产品的质量指标值位于区间(79.6,120.4)的概率为0.9544,
该企业的年利润是EX=100000[0.9544×10-(1-0.9544)×20]=863200.
点评 本题考查频率分布直方图的作法,考查平均数、方差的求法,以及正态分布的特点及概率求解,考查运算能力,属于中档题.
练习册系列答案
相关题目
14.等差数列{an}的前n项和为Sn(n∈N*),若当首项a1和公差d变化时,a7+a9+a11是一个定值,则下列选项中为定值的是( )
| A. | S15 | B. | S16 | C. | S17 | D. | S18 |
15.已知不等式组$\left\{\begin{array}{l}{x+y-4≤0}\\{x-4y+1≤0}\end{array}\right.$所表示的平面区域为M,不等式组$\left\{\begin{array}{l}{2x-3y-3≥0}\\{2x+2y-3≤0}\end{array}\right.$所表示的平面区域为N,若M中存在点在圆C:(x-3)2+(y-1)2=r2(r>0)内,但N中不存在点在圆C内.则r的取值范围是( )
| A. | (0,$\frac{\sqrt{13}}{2}$] | B. | ($\frac{\sqrt{13}}{2}$,$\sqrt{17}$) | C. | (0,$\sqrt{17}$) | D. | (0,$\frac{5\sqrt{2}}{4}$) |
12.在等比数列{an}中,如果a1+a2=40,a3+a4=60,那么a5+a6等于( )
| A. | 80 | B. | 90 | C. | 95 | D. | 100 |
13.首项为-12的等差数列从第20项起开始为正数,则公差d满足( )
| A. | d>$\frac{12}{19}$ | B. | d<$\frac{2}{3}$ | C. | $\frac{12}{19}$≤d<$\frac{2}{3}$ | D. | $\frac{12}{19}$<d≤$\frac{2}{3}$ |