题目内容
14.等差数列{an}的前n项和为Sn(n∈N*),若当首项a1和公差d变化时,a7+a9+a11是一个定值,则下列选项中为定值的是( )| A. | S15 | B. | S16 | C. | S17 | D. | S18 |
分析 由等差数列的性质可得:a7+a9+a11=3a9为一个定值,再利用等差数列的前n项和公式即可得出.
解答 解:由等差数列的性质可得:a7+a9+a11=3a9为一个定值,
则S17=$\frac{17({a}_{1}+{a}_{17})}{2}$=17a9为一个定值.
故选:C.
点评 本题考查了等差数列的通项公式性质及其前n项和公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
9.将函数f(x)=$\sqrt{3}$sin(ωx-$\frac{π}{3}$)的图象分别向左和向右移动$\frac{π}{3}$之后的图象的对称中心重合,则正实数ω的最小值是( )
| A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{1}{3}$ |
19.某市甲、乙、丙3个区的高中学生人数之比为2:3:5,现要用分层抽样方法从该市甲、乙、丙3个区所有高中学生中抽取一个样本,已知从甲区中抽取了80人,则应从乙、丙2个区中共抽取( )
| A. | 120人 | B. | 200人 | C. | 320人 | D. | 400人 |
6.有一个质地均匀的四面体玩具,四个面分别标注了数字1、2、3、4,甲、乙两位学生进行如下游戏:甲先抛掷一次,记下四面体朝下的数字为,再由乙抛掷一次,朝下数字为b,若|a-b|≤1就称甲乙两人“默契配合”,则甲、乙两人“默契配合”的概率为( )
| A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{8}$ | D. | $\frac{5}{8}$ |
3.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得到如下频数分布表.
(1)作出这些数据的频率分布直方图(用阴影表示);

(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计这种产品质量指标值的平均数$\overline{x}$及方差s2;
(3)当质量指标值位于(79.6,120.4)时,认为该产品为合格品.由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数$\overline{x}$,σ2近似为样本方差s2(每组数取中间值).
①利用该正态分布,求从该厂生产的产品中任取一件,该产品为合格品的概率;
②该企业每年生产这种产品10万件,生产一件合格品利润10元,生产一件不合格品亏损20元,则该企业的年利润是多少?
(提示:$\sqrt{104}$≈10.2,若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544)
| 质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125] |
| 频数 | 6 | 26 | x | 22 | 8 |
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计这种产品质量指标值的平均数$\overline{x}$及方差s2;
(3)当质量指标值位于(79.6,120.4)时,认为该产品为合格品.由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数$\overline{x}$,σ2近似为样本方差s2(每组数取中间值).
①利用该正态分布,求从该厂生产的产品中任取一件,该产品为合格品的概率;
②该企业每年生产这种产品10万件,生产一件合格品利润10元,生产一件不合格品亏损20元,则该企业的年利润是多少?
(提示:$\sqrt{104}$≈10.2,若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544)
4.已知集合A={-2,3},B={x|lnx>1},则A∩B=( )
| A. | {-2} | B. | {3} | C. | {-2,3} | D. | ∅ |