题目内容

17.已知P是圆x2+y2=1上的一动点,AB是圆(x-5)2+(y-12)2=4的一条动弦(A,B是直径的两个端点),则$\overrightarrow{PA}•\overrightarrow{PB}$的取值范围是[140,192].

分析 设出P、A、B坐标,求出两个向量,然后计算数量积,利用两角和与差的三角函数化简求解表达式的最值即可.

解答 解:设P(cosα,sinα),A(5+2cosβ,12+2sinβ),则B(5-2cosβ,12-2sinβ),
则$\overrightarrow{PA}$=(5+2cosβ-cosα,12+2sinβ-sinα),$\overrightarrow{PB}$=(5-2cosβ-cosα,12-2sinβ-sinα),
∴$\overrightarrow{PA}•\overrightarrow{PB}$=(5+2cosβ-cosα)(5-2cosβ-cosα)+(12+2sinβ-sinα)(12-2sinβ-sinα)
=166-10cosα-24sinα=166-26sin(α+φ),
∵-1≤sin(α+φ)≤1,
∴140≤$\overrightarrow{PA}•\overrightarrow{PB}$≤192.
故答案为:[140,192].

点评 本题考查平面向量的数量积运算,参数方程的应用,三角恒等变换,考查转化思想以及计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网