题目内容
等差数列{an}的前n项和为Sn,已知a10=30,a20=50,
(1)求通项an
(2)若Sn=80,求n
(3)设数列{bn}满足log2bn=an-12,求数列{bn}的前n项和Tn.
(1)求通项an
(2)若Sn=80,求n
(3)设数列{bn}满足log2bn=an-12,求数列{bn}的前n项和Tn.
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)由已知得
,由此能求出an.
(2)由已知得Sn=12n+
×2=n2+11n=80,由此能求出n=5.
(3)由log2bn=an-12=2n-2,得bn=22n-2=4n-1,由此能求出数列{bn}的前n项和Tn.
|
(2)由已知得Sn=12n+
| n(n-1) |
| 2 |
(3)由log2bn=an-12=2n-2,得bn=22n-2=4n-1,由此能求出数列{bn}的前n项和Tn.
解答:
解:(1)∵等差数列{an}的前n项和为Sn,a10=30,a20=50,
∴
,解得a1=12,d=2,
∴an=12+(n-1)×2=2n+10.
(2)∵a1=12,d=2,
∴Sn=12n+
×2=n2+11n,
∵Sn=80,∴n2+11n=80,
解得n=5.或n=-16(舍),
故n=5.
(3)∵log2bn=an-12=2n-2,
∴bn=22n-2=4n-1,
∴{bn}是以1为首项,4为公比的等比数列,
∴Tn=
=
(4n-1).
∴
|
∴an=12+(n-1)×2=2n+10.
(2)∵a1=12,d=2,
∴Sn=12n+
| n(n-1) |
| 2 |
∵Sn=80,∴n2+11n=80,
解得n=5.或n=-16(舍),
故n=5.
(3)∵log2bn=an-12=2n-2,
∴bn=22n-2=4n-1,
∴{bn}是以1为首项,4为公比的等比数列,
∴Tn=
| 1-4n |
| 1-4 |
| 1 |
| 3 |
点评:本题考查数列的通项公式的求法,考查数列的项数n的求法,考查数列的前n项和的求法,解题时要认真审题,注意等差数列和等比数列的性质的合理运用.
练习册系列答案
相关题目
定义在R上的函数满足f(x)=f(x+2),当x∈[1,3]时,f(x)=2-|x-2|,则( )
A、f(sin
| ||||
| B、f (sin1)>f (cos1) | ||||
C、f(cos
| ||||
| D、f (cos2)>f (sin2) |
已知全集U=R,集合A={1,2,3,4,5},B={x∈R|
≤0},则A∩B=( )
| x+2 |
| x-3 |
| A、{1,2} |
| B、{x|-2≤x<3} |
| C、{x|0≤x<3} |
| D、{0,1} |