题目内容
已知等差数列{an}中,已知等差数列{an}中,a3=5,S10=100
(1)求an,
(2)设bn=
,求{bn}的前n项和Tn.
(1)求an,
(2)设bn=
| 1 |
| anan+1 |
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)求出公差和首项即可求an,
(2)求出bn=
的通项公式,利用裂项法即可求{bn}的前n项和Tn.
(2)求出bn=
| 1 |
| anan+1 |
解答:
解:(1)由题意知
,解得a1=1,d=2,则an=2n-1.
(2)bn=
=
=
(
-
),
则Tn=
(1-
+
-
+…+
-
)=
(1-
)=
.
|
(2)bn=
| 1 |
| anan+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
则Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
点评:本题主要考查等差数列的通项公式以及数列的前n项和,利用裂项法是解决本题的关键.
练习册系列答案
相关题目