题目内容

7.求证:$\frac{1+sinα-cosα}{1+sinα+cosα}$=$\frac{1-cosα}{sinα}$.

分析 利用三角函数的恒等变换,分别化简等式的左边与右边,即可证明等式成立.

解答 证明:左边=$\frac{1+sinα-cosα}{1+sinα+cosα}$=$\frac{(1-cosα)+sinα}{(1+cosα)+sinα}$=$\frac{{2sin}^{2}\frac{α}{2}+2sin\frac{α}{2}cos\frac{α}{2}}{{2cos}^{2}\frac{α}{2}+2sin\frac{α}{2}cos\frac{α}{2}}$=$\frac{sin\frac{α}{2}}{cos\frac{α}{2}}$=tan$\frac{α}{2}$,
右边=$\frac{1-cosα}{sinα}$=$\frac{{2sin}^{2}\frac{α}{2}}{2sin\frac{α}{2}cos\frac{α}{2}}$=$\frac{sin\frac{α}{2}}{cos\frac{α}{2}}$=tan$\frac{α}{2}$,
∴左边=右边,等式成立.

点评 本题考查了三角函数恒等式的证明问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网