题目内容
2.附:若X~N(μ,σ2),则P(μ-δ<X≤μ+δ)=0.6826,P(μ-2δ<X≤μ+2δ)=0.9544.
| A. | 3413 | B. | 1193 | C. | 2718 | D. | 6587 |
分析 求出P(0<X≤1)=$\frac{1}{2}$×0.6826=0.3413,即可得出落入阴影外部(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值.
解答 解:由题意P(0<X≤1)=$\frac{1}{2}$×0.6826=0.3413,
∴落入阴影部分点的个数的估计值为10000×0.3413=3413,
∴落入阴影外部(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为10000-3413=6587.
故选:D.
点评 本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.
练习册系列答案
相关题目
14.某地市高三理科学生有15000名,在一次调研测试中,数学成绩ξ服从正态分布N(100,σ2),已知P(80<ξ≤100)=0.40,若按成绩分层抽样的方式取100份试卷进行分析,则应从120分以上的试卷中抽取( )
| A. | 5份 | B. | 10份 | C. | 15份 | D. | 20份 |
11.已知圆C1:(x+2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,A,B分别是圆C1和圆C2上的动点,点P是y轴上的动点,则|PB|-|PA|的最大值为( )
| A. | $\sqrt{2}$+4 | B. | 5$\sqrt{2}-4$ | C. | $\sqrt{2}$ | D. | $\sqrt{26}$ |