题目内容

16.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知2c=3b,sinA=2sinB,则$\frac{cosA}{cosB}$的值为-$\frac{2}{7}$.

分析 利用正弦定理得出三角形三边的比例关系,利用余弦定理求出cosA,cosB得出比值.

解答 解:∵2c=3b,∴b:C=2:3.
∵sinA=2sinB,∴a=2b,
∴a:b;c=4:2:3.
设a=4,b=2,c=3,
则cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=-$\frac{1}{4}$,cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{7}{8}$.
∴$\frac{cosA}{cosB}$=-$\frac{1}{4}×\frac{8}{7}$=-$\frac{2}{7}$.
故答案为:$-\frac{2}{7}$.

点评 本题考查了正弦定理,余弦定理,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网