题目内容
若正数x,y满足2x+3y=
,则
+
的最小值为 .
| 1 |
| 2 |
| 1 |
| x |
| 1 |
| y |
考点:基本不等式
专题:不等式的解法及应用
分析:利用“乘1法”和基本不等式的性质即可得出.
解答:
解:∵正数x,y满足2x+3y=
,
∴
+
=2(2x+3y)(
+
)=2(5+
+
)≥2(5+2
)=10+4
,当且仅当
y=
x=
时取等号.
故答案为:10+4
.
| 1 |
| 2 |
∴
| 1 |
| x |
| 1 |
| y |
| 1 |
| x |
| 1 |
| y |
| 3y |
| x |
| 2x |
| y |
|
| 6 |
| 3 |
| 2 |
| ||||
| 2 |
故答案为:10+4
| 6 |
点评:本题考查了“乘1法”和基本不等式的性质,属于基础题.
练习册系列答案
相关题目
抛物线y=ax2(a≠0)的焦点坐标是( )
A、(
| ||
B、(-
| ||
C、(0,
| ||
D、(0,-
|
已知四棱锥底面是边长为2的正方形,侧棱长均为2,则侧面与底面所成二面角的余弦值为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
直线3x+y+3=0在y轴上的截距是( )
| A、3 | B、1 | C、-1 | D、-3 |
经过两点A(4,2y+1),B(2,-3)的直线的倾斜角为
,则y=( )
| 3π |
| 4 |
| A、-1 | B、-3 | C、0 | D、2 |
直线
x+y-5=0的倾斜角是( )
| 3 |
| A、30° | B、60° |
| C、120° | D、150° |