题目内容

设m,n是两条不同的直线,α,β是两个不同的平面,给出下列四个命题:
①如果m∥α,n?α,那么m∥n;
②如果m⊥α,m⊥β,那么α∥β;
③如果α⊥β,m⊥α,那么m∥β;
④如果α⊥β,α∩β=m,m⊥n,那么n⊥β.
其中正确的命题是(  )
A、①B、②C、③D、④
考点:空间中直线与平面之间的位置关系
专题:空间位置关系与距离
分析:利用空间中线线、线面、面面间的位置关系求解.
解答: 解:①如果m∥α,n?α,m与n平行或异面,故①错误;
②如果m⊥α,m⊥β,那么由平面与平面平行的判定定理得α∥β,故②正确;
③如果α⊥β,m⊥α,那么m∥β或m?β,故③错误;
④如果α⊥β,α∩β=m,m⊥n,那么n与β相交,平行或n?β,故④错误.
故选:B.
点评:本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网