题目内容

各项均为正数的数列{an},其前n项和为Sn,且满足a1>1,6Sn=an2+3an+2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}前n项和为Tn,且满足an+1Tn=anTn+1-9n2-3n+2.问b1为何值时,数列{bn}为等差数列;
(Ⅲ) 求证:
1
a1
+
1
a2
+…+
1
an
2
3
(
3n+2
-
2
)
考点:数列与不等式的综合,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由题意,得6Sn=an2+3an+26Sn+1=
a
2
n+1
+3an+1+2
,从而an+1-an=3,由此能求出an=3n-1.(Ⅱ)由已知得
Tn+1
3n+2
-
Tn
3n-1
=1
,数列{
Tn
3n-1
}
是以
T1
2
为首项,以1为公差的等差数列,由此能求出b1=2.(Ⅲ)由
1
an
=
1
3n-1
=
2
2
3n-1
2
3n-1
+
3n+2
=
2(
3n+2
-
3n-1
)
3
,能证明
1
a1
+
1
a2
+…+
1
an
2
3
(
3n+2
-
2
)
解答: (Ⅰ)解:由题意,得6Sn=an2+3an+2
6Sn+1=
a
2
n+1
+3an+1+2

②-①得6an+1=
a
2
n+1
+3an+1-an2-3an

即(an+1+an)(an+1-an-3)=0…2分
因为an>0,所以an+1-an=3
又n=1时,6a1=a12+3a1+2
即(a1-1)(a1-2)=0
又a1>1,a1=2
所以an=3n-1.…4分
(Ⅱ)解:由(Ⅰ)及题意,得:
(3n-1)Tn+1-(3n+2)Tn=9n2-3n+2=(3n-1)(3n+2)
Tn+1
3n+2
-
Tn
3n-1
=1

所以数列{
Tn
3n-1
}
是以
T1
2
为首项,以1为公差的等差数列,…6分
所以
Tn
3n-1
=
T1
2
+n-1

Tn=(
T1
2
+n-1)(3n-1)

若数列{bn}为等差数列,则
T1
2
-1=0
,即T1=2,
所以b1=2.(此时bn=6n-4)…8分
(Ⅲ)证明:由(Ⅰ)及题意,得:
1
an
=
1
3n-1
=
2
2
3n-1
2
3n-1
+
3n+2

=
2(
3n+2
-
3n-1
)
3
…11分
所以
1
a1
+
1
a2
+…+
1
an
2
3
(
5
-
2
+
8
-
5
+…+
3n+2
-
3n-1
)

1
a1
+
1
a2
+…+
1
an
2
3
(
3n+2
-
2
)
.…13分.
点评:本题考查数列的通项公式的求法,考查等差数列的首项的求法,考查不等式的证明,解题时要认真审题,注意等差数列的性质的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网