题目内容

12.已知和式$S=\frac{1+2+3+…+n}{n^2}$,当n→+∞时,S无限趋近于一个常数A,则A可用定积分表示为(  )
A.${∫}_{0}^{1}$xdxB.${∫}_{0}^{1}$$\frac{1}{x}$dxC.${∫}_{0}^{1}$$\sqrt{x}$dxD.${∫}_{0}^{1}$x2dx

分析 利用定积分的定义即可选出.

解答 解:S=$\frac{1+2+…+n}{{n}^{2}}$=$\frac{\frac{n(n+1)}{2}}{{n}^{2}}$=$\frac{n+1}{2n}$=$\frac{1}{2}$(1+$\frac{1}{n}$),
∴$\underset{lim}{n→∞}$$\frac{1}{2}$(1+$\frac{1}{n}$)=$\frac{1}{2}$,
∵${∫}_{0}^{1}$xdx=$\frac{1}{2}$x2|${\;}_{0}^{1}$=$\frac{1}{2}$,
故选:A

点评 本题主要考查了定积分的意义,正确理解定积分的定义是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网