题目内容
8.已知等边三角形ABC的边长为1,若$\overrightarrow{BC}=4\overrightarrow{BE},\overrightarrow{AD}=\overrightarrow{DC}$,则$\overrightarrow{BD}•\overrightarrow{AE}$的值为( )| A. | -2 | B. | $-\frac{9}{16}$ | C. | $\frac{9}{16}$ | D. | 2 |
分析 建立平面直角坐标系,求出各点坐标,得出向量的坐标魔代入数量积公式计算.
解答
解:以BC为x轴,以BC边上的高为y轴建立平面直角坐标系,
则B(-$\frac{1}{2}$,0),A(0,$\frac{\sqrt{3}}{2}$),
∵$\overrightarrow{BC}=4\overrightarrow{BE},\overrightarrow{AD}=\overrightarrow{DC}$,
∴E是OB的中点,D是AC的中点,
∴E(-$\frac{1}{4}$,0),D($\frac{1}{4}$,$\frac{\sqrt{3}}{4}$).
∴$\overrightarrow{BD}$=($\frac{3}{4}$,$\frac{\sqrt{3}}{4}$),$\overrightarrow{AE}$=(-$\frac{1}{4}$,-$\frac{\sqrt{3}}{2}$),
∴$\overrightarrow{BD}•\overrightarrow{AE}$=$\frac{3}{4}×$(-$\frac{1}{4}$)+$\frac{\sqrt{3}}{4}$×(-$\frac{\sqrt{3}}{2}$)=-$\frac{9}{16}$.
故选B.
点评 本题考查了平面向量的数量积运算,属于基础题.
练习册系列答案
相关题目
20.下列结论正确的是( )
| A. | sinx<x,x∈(-π,π) | B. | x-x2>0,x∈(0,2) | C. | ex>1+x,x∈R | D. | lnx≤x-1,x∈(0,+∞) |
19.一组数据3,4,5,s,t的平均数是4,这组数据的中位数是m,对于任意实数s,t,从3,4,5,s,t,m这组数据中任取一个,取到数字4的概率的最大值为( )
| A. | $\frac{2}{3}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{5}$ | D. | $\frac{3}{5}$ |
16.半径为3cm的圆中,$\frac{π}{7}$的圆心角所对的弧长为( )
| A. | $\frac{3π}{7}$cm | B. | $\frac{π}{21}$cm | C. | $\frac{3}{7}$cm | D. | $\frac{9π}{7}$cm |