题目内容

6.计算(用数字作答):${C}_{3}^{2}$+${C}_{4}^{2}$+${C}_{5}^{2}$+…+${C}_{19}^{2}$=1139.

分析 利用${C}_{n}^{m+1}+{C}_{n}^{m}$=${C}_{n+1}^{m+1}$求解.

解答 解:${C}_{3}^{2}$+${C}_{4}^{2}$+${C}_{5}^{2}$+…+${C}_{19}^{2}$
=(${C}_{3}^{3}$+${C}_{3}^{2}$)+${C}_{4}^{2}$+${C}_{5}^{2}$+…+${C}_{19}^{2}$-${C}_{3}^{3}$
=(${C}_{4}^{3}$+${C}_{4}^{2}$)+${C}_{5}^{2}$+…+${C}_{19}^{2}$-1
=(${C}_{5}^{3}$+${C}_{5}^{2}$)+…+${C}_{19}^{2}$-1
=${C}_{6}^{3}$+…+${C}_{19}^{2}$-1
=…=${C}_{19}^{3}$+${C}_{19}^{2}$-1
=${C}_{20}^{3}$-1=1139.
故答案为:1139.

点评 本题考查组合数的求法,是基础题,解题时要认真审题,注意组合数公式的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网